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Abstract

This paper compares the ability of several econometric and machine
learning methods to nowcast GDP in (pseudo) real-time. The analy-
sis takes the example of Dutch GDP over the period 1992Q1–2018Q4
using a broad data set of monthly indicators. It discusses the fore-
cast accuracy but also analyzes the use of information from the large
data set of macroeconomic and financial predictors. We find that, on
average, the random forest provides the most accurate forecast and
nowcasts, whilst the dynamic factor model provides the most accurate
backcasts.

Keywords: factor models; forecasting competition; machine learning
methods; nowcasting.
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1 Introduction

GDP is published several weeks after the end of a quarter and initial releases
are subject to substantial uncertainty. This fact led to the development of
models to predict GDP of the current quarter, a practice referred to as
“nowcasting”. Such nowcasting models use dimension reduction techniques
to nowcast GDP from a large number of macroeconomic and financial pre-
dictors.

This paper explores the nowcasting precision of econometrics and ma-
chine learning methods in comparison to the most commonly used nowcast-
ing method, the dynamic factor model. We consider two and quarters ahead
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forecasts, nowcasts, and backcasts using the example of Dutch GDP with a
broad data set of 83 macroeconomic and financial predictors. We consider
the performance of several methods: factor models, regularization methods,
random subspace methods, and the random forest. We separately evaluate
their performance over different periods and different states of the economy.

For policy purposes, the interpretation of nowcasts is often of interest and
we investigate how the different methods use the information from the large
data set. This is relatively straightforward for the factor, regularization,
and random subspace models. The random forest, in contrast, is highly
nonlinear and we use Shapley values to calculate the importance of the
different predictors.

Our findings suggest that, on average, the random forest provides the
most precise predictions. An exception are the backcasts of the dynamic fac-
tor model until the financial crisis. Yet, this advantage of the dynamic factor
model has disappeared and the random forest and LASSO model provide
slightly more precise backcasts since the financial crisis. We observe that
the random forest and random subset selection use the different predictors
considerably more evenly over categories as well as over horizons than the
dynamic factor model and the LASSO.

An important benchmark for our analysis is the dynamic factor model as
this model has been widely used at central banks to nowcast GDP (Giannone
et al., 2008; Bańbura and Rünstler, 2011; Jansen et al., 2016; Hindrayanto
et al., 2016; Bok et al., 2018). Another popular class of models that we
also consider are MIDAS based models (Marcellino and Schumacher, 2010;
Kuzin et al., 2011; Foroni and Marcellino, 2014).

We compare these models to a range of models that are sometimes re-
ferred to as machine learning models. The first set of models are regular-
ization methods, which estimate linear models where the parameters are
subject to penalization terms. The nature of the penalization distinguishes
the different models. We consider the LASSO of Tibshirani (1996) and the
elastic net of Zou and Hastie (2005). We also considered other penalization
models, namely the adaptive LASSO and ridge regression. However, the
results were inferior to the LASSO and elastic net and for brevity we omit
them from the discussion. Babii et al. (2022) provide theoretical properties
for the LASSO when estimating models with macroeconomic and financial
time series data. They compare nowcasts of US GDP from the LASSO,
ridge regression, and elastic net to the nowcasts of the New York Fed. They
find that only their suggested specification of the LASSO outperforms the
dynamic factor model of the FED. This corresponds with our results for
the Netherlands, where the LASSO and the elastic net are of comparable
precision to the dynamic factor model over the entire forecast period.

Next, we consider the random subspace methods of Elliott et al. (2013)
and Boot and Nibbering (2019). These methods exploit the fact that model
averaging tends to reduce the mean square forecast error by making a large
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number of predictions, where the model for each prediction combines subsets
of the predictors in the data set in a random manner. The predictions are
then averaged to yield the final forecast. Our results show that this is a
competitive approach to nowcasting.

Finally, we consider the random forest of Breiman (2001), which com-
bines the model averaging feature of the random subspace methods with the
nonlinear modeling inherent in regression trees. A downside of the random
forest is that its nonlinearity complicates the interpretation of the role of
the different predictors in the forecasts and we work with Shapley values
as discussed by Štrumbelj and Kononenko (2014) and Lundberg and Lee
(2017) in our analysis of the importance of the predictors in the random
forest.

We also consider averaging the forecasts from the different models using
a range of weights that have been discussed by Elliott and Timmermann
(2016). Model averaging has been shown to be able to reduce the mean
square forecast error as it can reduce the variance of the resulting forecast.
However, the weights used to average the forecasts introduce uncertainty,
which can negatively impact the forecast precision. In our application, av-
erage forecasts are among the best forecasts over all horizons.

Our paper relates to the growing literature on forecasting with machine
learning methods in macroeconomics. Richardson et al. (2018) evaluate
nowcasts of New Zealand’s GDP from a number of machine learning models
using quarterly data. They find that machine learning methods, in particu-
lar support vector machines, improve over their benchmark, the univariate
autoregressive model. They do, however, not include the dynamic factor
model or random forest, which are the leading methods in our analysis.
Jönsson (2020) evaluates the nowcasting performance of the nearest neigh-
bor algorithm for Swedish GDP and finds that it compares well to standard
linear sentiment index models that are commonly used in Sweden. Yoon
(2022) nowcasts Japanese GDP using boosted trees and random forests and
finds that these outperform nowcasts of the Bank of Japan and the In-
ternational Monetary Fund. Finally, Jardet and Meunier (2022) nowcast
world GDP using factor-augmented and LASSO MIDAS models. They find
that factor-augmented models deliver the most precise nowcasts. An impor-
tant difference between these papers and our work is that their analysis is
restricted to average forecast performance measures. In contrast, the impor-
tance of the different predictors in the nowcasts is not considered. In a policy
context, however, such interpretations are important and for this reason we
put particular emphasis on the role of the predictors in our nowcasts.

Machine learning methods have also been used to predict other macroe-
conomic predictors. Medeiros et al. (2021) use a range of methods to predict
U.S. inflation between 1 and 12 month into the future. Similar to our find-
ings, their results suggest that the random forest is the most precise method
to forecast inflation.
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Gogas et al. (2021) predict euro area unemployment using machine learn-
ing methods and similarly find that the random forest delivers the most pre-
cise unemployment forecasts. Finally, Maehashi and Shintani (2020) forecast
seven Japanese macroeconomic time series (but not GDP). Comparable to
our results, they find that machine learning models tend to offer more pre-
cise forecasts than traditional time series models and that ensemble methods
improve over individual models.

In the next section, we introduce the models that we use for nowcasting
and discuss the interpretation of the role the different predictors play in the
nowcasts. Details of the data are in Section 3 and the results are discussed
in Section 4. Finally, Section 5 concludes.

2 Nowcasting methodology

2.1 Nowcasting models

In this section, we give a brief overview of the different methods we use in
this paper and the parameter choices we make. Since these methods are well
established in the literature, we relegate a more formal description to the
Online Appendix. We compare the nowcasts from these methods to those
from two simple models. The first is the prevailing mean model, which takes
the mean in the estimation sample as the forecast. This model serves as the
benchmark in that we report the root mean square forecast error (RMSFE)
of each method as a ratio to that of the prevailing mean. The second is the
autoregressive model with lag length chosen by AIC with a maximum lag
number of p = 4. All parameters are re-estimated for each nowcast using an
expanding window.

Dynamic factor model

The dynamic factor model is widely used in the nowcasting literature. In
this paper, we use the model developed by the Dutch central bank, which
relies on the specification introduced by Giannone et al. (2008), Bańbura and
Rünstler (2011), Jansen et al. (2016), and Bok et al. (2018). The nowcasting
dynamic factor model is based on the approximate factor model of Stock
and Watson (2002), which uses principal components to estimate the factor
loadings in the dynamic factor model. The specification depends on the
number of static factors (r), the number of dynamic factors (q) and the
number of lags (p) in the VAR. In line with the literature (Kuzin et al., 2013;
Jansen et al., 2016), we produce nowcasts for models using all combinations
of one to six static factors, one to six lags for the static factors, and one to six
dynamic factors (where q ≤ r). In total we estimate 126 model specification.
We then combine these nowcasts using an equal weighted average to obtain
the final nowcast of the dynamic factor model.
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Mixed-data sampling factor-augmented model

The MIDAS model of Ghysels et al. (2007) has been adapted for nowcast-
ing by Marcellino and Schumacher (2010). In the factor-augmented MIDAS
model, factors are extracted at a monthly frequency. These are then used
to model the quarterly series. The monthly series can be averaged using the
exponential Almon lag. Alternatively, in the unrestricted MIDAS model, the
monthly series of factors are included separately using skip sampling. In our
analysis, the unrestricted MIDAS model produced the more precise nowcasts
and we will therefore concentrate on this weighting scheme. For consistency
with the dynamic factor model, we estimate the factor-augmented model,
using the first factor from each of the 126 specifications, i.e. 1 to 6 stat-
ic/dynamic factors and 1 to 6 lags in the factor VAR. We then average
the different forecasts. For brevity, we will refer to this factor-augmented
MIDAS model as the MIDAS model.

Regularization techniques

We use the least absolute shrinkage and selection operator (LASSO) and
the elastic net in this paper. These nowcasting models relate GDP growth
to the full set of macroeconomic and financial predictors and their lags,
and we skip sample these predictors to account for their monthly frequency.
This leads to a extremely highly parameterized model and the necessary
dimension reduction is then achieved through penalization.

Compared to the previous two models, the models using regularization
assume a sparse DGP rather than the dense specification of the factor mod-
els. The difference between the two models is that the LASSO of Tibshirani
(1996) performs both regularization and predictor selection by imposing an
ℓ1 penalty in the estimation of the coefficients, whereas the elastic net of
Zou and Hastie (2005) imposes the ℓ1 norm to select predictors and shrinks
the remaining coefficients towards zero through the use of the ℓ2 norm.

The amount of shrinkage in the LASSO is determined by a scalar pa-
rameter, λ, and by two scalar parameters, λ and α in the elastic net. We
determine these parameters via cross-validation. Importantly, the cross-
validation is done for each forecast separately and uses only data in the
respective estimation sample, and this is the case for all empirical methods
that use cross-validation.

Random subspace regression

Random subspace methods encompass methods that reduce the predictor
space by averaging forecasts from either random combinations or random
subsets of the data. The idea of randomly selecting smaller models and
averaging (with equal weights) their forecast is based on complete subset
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regression of Elliott et al. (2013). They build on the idea of model averag-
ing to combine forecasts obtained from all possible combinations of smaller
linear models that can be produced from a large data set. However, the
number of possible combinations can quickly become prohibitively large. A
solution is to take a smaller number, say R, of randomly chosen subsets
of predictors. Boot and Nibbering (2019) show that this approximates the
complete subset regression for finite R, such as R = 1000.

The full predictor set contains all skip-sampled predictors and their lags.
These are then sampled at random and a forecast, nowcast, or backcast is
produced from a linear model containing the sampled predictors. The final
prediction is the equally weighted average of the R predictions.

A tuning parameter of this method is the size of each predictor subset,
k. Theoretical results by Boot and Nibbering (2019) suggest that k should
be chosen relatively large at about 30. The experience of Pick and Carpay
(2022) suggests that smaller k can deliver more precise forecasts. We initially
experimented with different choices of k up to 30 and our experience confirms
that smaller choices of k deliver better nowcasts. As a result, we average
nowcasts over those obtained using k = 2, 3, 4, 5.

An alternative to selecting predictors is to use weighted averages of the
predictors. Boot and Nibbering (2019) discuss this option and call it ‘ran-
dom projection’. The skip-sampled predictors and their lags are combined
to a small number k of weighted averages using a random weighting ma-
trix. For Gaussian random projections, the weights are independently drawn
from a standard normal distribution. The k weighted averages are then
used in a linear regression model to predict GDP growth. R realizations of
the weights are drawn and the resulting forecasts are averaged with equal
weights. Again, k needs to be determined and, as above, we average now-
casts using k = 2, 3, 4, 5.

Other weighting schemes are possible, for example, the weights used by
Guhaniyogi and Dunson (2015). The analysis of Pick and Carpay (2022),
however, suggests that random subset selection and random projection de-
liver superior forecast performances and we therefore limit our attention to
these two methods.

Random forest

The random forest averages the forecasts of multiple regression trees. To
grow a regression tree, the space of predictors, which, similar to above,
are skip-sampled, is partitioned with the aim of minimizing the in-sample
squared error. At each partition, the algorithm chooses a split based on one
of the predictor that realizes the largest decrease in squared error.

Trees are designed to have a high degree of independence of each other
by randomly drawing a subset of predictors and a subset of observations to
grow any given tree. Averaging the forecasts from the trees in the random
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Table 1
Hyperparameter choices

Method hyperparam. choice
DFM no. static factors, q average over r = 1, 2, . . . , 6 static factors

no. dynamic factors, q average over q = 1, 2, . . . , 6 dynamic factors
lag length, p average over p = 1, 2, . . . , 6 lags

MIDAS no. static factors, q average over r = 1, 2, . . . , 6 static factors
no. dynamic factors, q average over q = 1, 2, . . . , 6 dynamic factors
lag length, p average over p = 1, 2, . . . , 6 lags

LASSO weight ℓ1 penalty, λ cross-validation
EN weight ℓ1 penalty, λ cross-validation

weight ℓ1 vs ℓ2 penalty, α cross-validation
RS size models, k average over k = 2, 3, 4, 5

no. of models, R 1000
RP size models, k average over k = 2, 3, 4, 5

no. of models, R 1000
RF share training set ω average over ω = 0.6, 0.7, 0.8, 0.9

no. of predictors per tree, κ cross-validate per ω for κ = 1, 2, . . . , 249
no. of trees 400

The methods are: DFM the dynamic factor model, MIDAS the mixed-data sam-
pling factor-augmented model, LASSO the least absolute shrinkage and selection
operator, EN the elastic net, RS the random subset selection, RP the random
projection, RF the random forest.

forest therefore minimizes the variance of the average forecast.
Regression trees, if unchecked, have the tendency to overfit the data.

In order to reduce overfitting, each estimation sample is divided in a train-
ing and a validation set. The share of the data in the training set, ω, in
all estimation samples is varied with ω = 0.6, 0.7, 0.8, 0.9 and we average
forecasts over the results from the ω. Within each training set size, ω, we
cross-validate the number of skip-sampled predictors to grow the tree, where
the possible values of the number of predictors is k = 1, 2, . . . , 249. We use
the prediction of the 400 trees in each random forest.

2.2 Nowcast combinations

Given that the models above have distinct ways of incorporating the informa-
tion of the monthly indicators, combining the forecasts could be beneficial.
Combining several forecasts from different sources has a long track record
in the forecasting literature (Timmermann, 2006). Forecast combinations
require combination weights. As optimal weights can be determined only
under very specific assumptions, we use a range of practical approaches to
determine the weights.

The first, simple solution is to give the forecasts equal weight, which
turns out to be a difficult to beat benchmark (Timmermann, 2006). An ad-
vantage of equal weighted forecast combinations is that fixed weights avoids
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estimation uncertainty that would translate into forecast uncertainty. The
downside, however, is that if the unknown optimal weights are far from
equal weights, the forecast combination may suffer. We therefore also con-
sider ways to estimate the weights.

The first method to estimate the forecast weights is to use weights that
are inversely proportional to the MSFE. We measure the cumulative square
forecast error, υ2j,t|t−h, and calculate the weights as

wj,t =
(υj,t|t−h)

−2∑m
j=1(υj,t|t−h)−2

where m is the number of forecasts to combine. We calculate the cumulative
error, υj,t|t−h, using either an expanding window or a rolling window of ten
quarters. Prior to the first forecast, no weights can be determined and we
take an equally weighted average as the first forecast combination.

The weights above do not address potential biases of the forecasts. If
biases are suspected, Granger and Ramanathan (1984) suggest estimating
weights in a linear regression

yt+h|t = β0 +
m∑
j=1

βj ŷj,t+h|t + ϵt+h

where the estimated coefficients are then used as forecast weights in addition
to the intercept that estimates the bias. Again, we estimate the coefficient
using an expanding and a rolling window of size 40. For the first 40 forecasts
we use equal weights.

2.3 Nowcast evaluations

We report the forecast performance as measured by the root mean square
forecast error (RMSFE) of each method relative that of the prevailing mean
forecast. Define the forecast error as êt|t−h,a = yt − ŷt|t−h,a, where subscript
a denotes the respective method. Then the ratio of RMSFE is

relative RMSFE =

√
1
Tf

∑Tf

t=1 ê
2
t|t−h,a√

1
Tf

∑Tf

t=1 ê
2
t|t−h,pm

where subscript pm the prevailing mean forecast, and Tf denotes the number
of forecasts. For the prevailing mean, we report the levels of the RMSFE.

In order to distinguish the effect of bias and standard deviation on the
forecast performance, we also report the ratio of the absolute forecast bias
and the ratio of the forecast standard deviations. The ratio of the absolute
bias is

relative abs.bias =

1
Tf

∑Tf

t=1 |êt|t−h,a|
1
Tf

∑Tf

t=1 |êt|t−h,pm |
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and the ratio of the standard deviation is

relative std.deviation =

√
1
Tf

∑Tf

t=1 ê
2
t|t−h,a − ¯̂e2h,a√

1
Tf

∑Tf

t=1 ê
2
t|t−h,pm − ¯̂e2h,pm

where ¯̂eh,a = 1
Tf

∑Tf

t=1 êt|t−h,a for a given nowcasting method a, including

the prevailing mean model.
We also use the test of Diebold and Mariano (1995) to evaluate signifi-

cance of the forecasts of the different models against those from the dynamic
factor model. The Diebold-Mariano test results should be interpreted with
caution since we are using an expanding window, which could imply that
the assumptions of the Diebold-Mariano test are violated. Significance can
therefore be interpreted as a sign of improved forecast performance relative
to insignificant forecasts but not necessarily at the stated significance level.

2.4 Interpreting nowcasts

In policy environments, such as central banks, the interpretation of nowcasts
is important. We will therefore illustrate the contributions of the underlying
time series to the nowcasts over time. Note, however, that the contributions
merely provide the importance of predictors in a given model, which need not
imply a structural economic interpretation. For the dynamic factor model,
the weights that are assigned to predictors in a model are determined using
the methods of Koopman and Harvey (2003) and Bańbura and Rünstler
(2011).1

The MIDAS, LASSO, elastic net, random subset regression, and random
projection are all linear in the predictors. This means that it is straightfor-
ward to extract the contributions of the time series to the forecasts. For the
shrinkage methods, the contributions of the time series to the forecasts fol-
low from the linear relationship the selected predictors have with GDP. The
random subspace methods also fall into the class of linear models conditional
on the selection predictors and the projection matrices.

The random forest, in contrast, is a highly nonlinear model, which makes
interpreting the role of different predictors considerably more complex. We
use the concept of Shapley values (Shapley, 1953) to interpret the role of
predictors, which has been developed further by Štrumbelj and Kononenko
(2014) and Lundberg and Lee (2017).

The Shapley value measures the average difference in the loss of trees
that include the predictor in question to the loss of trees that do not include

1We assign the contribution of the constant to the five predictor groups based on the
derived average weight per predictor group. We calculate weights for each forecasting
horizon and re-scale all weights to lie in the interval [0.01, +∞). See Koopman and
Harvey (2003) for analytical derivation of the weights.
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that predictor. Denote the loss of a tree that includes a given predictor
i by L(S ∪ {i}) and that of another tree with the same predictors except
predictor i by L(S), where S is the set of predictors in the tree except
predictor i, and S ⊆ F with F denoting the complete set of predictors. As
the effect of predictor i likely depends on the other predictors in the tree,
the loss differential is computed for all possible predictors in a tree. The
contribution of predictor i, ϕi, is the weighted average of the loss differences

ϕi =
1

NM

∑
S⊆F

[L(S ∪ {i})− L(S)]

where NM is the number of possible combinations of predictors in trees
excluding predictor i. With many predictors, this procedure is computa-
tionally burdensome and we therefore use the approximation proposed by
Štrumbelj and Kononenko (2014), which uses randomly sampled subsets of
predictors to compute the Shapley value for each predictor.

3 Data

The data set consists of 83 monthly time series and quarterly GDP that were
downloaded on the 26th of March 2019. The statistical monthly information
set reflects the public knowledge at the end of the month. The time series
were obtained from Statistics Netherlands, the central banks of Belgium
and the Netherlands, Datastream, the European central bank, Eurostat,
and the Hamburg Institute of International Economics and the Dutch RAI
association.

The series can be grouped into five categories. The first category is
hard, quantitative information on production and sales, such as industrial
production, car sales, retail sales, exports, imports, and unemployment.
The second category is soft, qualitative information on expectations derived
from surveys among consumers, retailers, and firms. The third category con-
tains financial predictors, both quantities (monetary aggregates) and prices
(interest rates and stock prices), which determine financing conditions for
firms and consumers. Moreover, financial market prices partly reflect finan-
cial market expectations on output developments in the near future. The
fourth category contains information on prices, i.e. consumer prices, pro-
ducer prices, the housing price, and commodity prices. The fifth category
contains some miscellaneous series, i.e. bankruptcies and issued vehicle reg-
istrations.

Most monthly data are seasonally (and calendar effects) adjusted at the
source, except for prices and financial predictors. If data are not seasonally
adjusted we apply the US Census’ X12-method. All monthly series are made
stationary by differencing, log-differencing or double log-differencing (in the
case of prices). Moreover, all predictors are standardized by subtracting
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the mean and dividing by the standard deviation. This normalization is
necessary to avoid overweighting of high-variance series in the extraction
of common factors. Seasonal adjustment and standardization is done in
pseudo-real time so as to mimic the process of a nowcaster over our forecast
sample. Details can be found in Table A.1 in the Appendix.

All monthly indicator series start in January 1985, while the quarterly
GDP series start in the first quarter of 1985. The estimation period starts in
1986M1. The forecast evaluation period runs from 1992Q1 to 2018Q4. We
produce pseudo-out-of sample forecasts for the observations in the forecast
period using an expanding estimation sample, that is, model selection and
the estimation of the parameters in the models relies on the data of the es-
timation sample and, after each forecast, the estimation sample is expanded
to include the additional observations.

Our forecast period spans different economic episodes. We, therefore,
separately analyze the forecasts for the period until the financial crisis, that
is, the period of the Great Moderation (1992Q1–208Q1). Next, we consider
the Financial Crisis (2008Q2–2011Q1) and, finally, the period Post Financial
Crisis (2011Q2–2018Q4). We abbreviate these periods as GM, FC and PFC,
respectively. Additionally, we analyze the performance of the model during
recessionary periods, expansionary periods and periods of moderate growth,
based on the OECD recession indicator for the Netherlands. Based on our
expert judgment we remove the 2001 recession and the 2018 recession from
the mechanical business cycle dating tool of the OECD because these periods
could better be characterized as periods of moderate growth than recessions.
Moreover, we characterize the period between the 2008-2009 recession and
the 2011-2023 recession as a period of moderate growth as well. During the
latter period, growth remained stagnant. Over our entire forecasting period,
the Dutch economy was in recession during 22 quarters, expanded during
57 quarters, and during 29 quarters the economy grew moderately. Figure
1 shows the periods graphically.

The ragged edge

The different indicators are published with varying delays. Generally, the
hard predictors are accompanied with a significant publication delay, whereas
soft predictors (surveys) are published on a more timely basis. The varying
availability of the indicators is commonly referred to as the “ragged-edge”
(Wallis, 1986).

Our modelling strategy accounts for data availability at the moment
when the prediction would be made in real time. Our approach is akin to
the direct forecasting approach: rather than forecast predictors that are still
unreleased and include the predicted values in our nowcasts, we predict GDP
using the latest available data. M1, for example, has a publication delay of
two month (see the appendix). Predictions for all horizons in May, say, will
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Figure 1: Real quarter-on-quarter GDP growth in the Netherlands, 1992Q1-2018Q4
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Note: Three time periods are depicted: GM: Great Moderation (1992Q1-2008Q1), FC:

Financial Crisis (2008Q2-2011Q1) and PFC: Post-Financial Crisis (2011Q2-2018Q4).

Shaded areas recessions according to OECD recession indicator for the Netherlands.

therefore use the M1 number from March. The estimation of each model
equally account for the publication lags such that treatment of publication
lags is consistent throughout the modelling. This has been called “vertical
realignment” by Marcellino and Schumacher (2010). We have experimented
with other methods to deal with the ragged-edge, such as using univariate
methods to predict the missing observations. However, these methods, while
computationally much more costly, did not lead to improvements in nowcast
precision and, for brevity, we therefore omit these results.

We employ a pseudo real-time design, which takes data publication de-
lays into account, but ignores the possibility of data revisions for GDP and
some indicators, such as retail trade. The latter might imply that we over-
estimate the forecasting accuracy of statistical models. However, it is also
quite likely that the effects of data revisions on the final forecast will largely
cancel out because statistical methods typically attempt to eliminate noise
from the process by either extracting factors from a large data set or pool-
ing large numbers of indicator-based forecasts. For example, using real-time
data vintages for Germany, Schumacher and Breitung (2008) did not find
any clear impact of data revisions on the forecast errors of factor mod-
els. Moreover, the effect on the relative performances of models, which is
the main focus of this paper, is likely to be quite small (see Bernanke and
Boivin, 2003).
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4 Results

4.1 Model Performance

Table 2 reports the RMSFE over the entire forecast sample over eleven
forecast horizons: three monthly forecasts for each of the two quarters before
the target quarter, three monthly nowcasts during the target quarter, and
two monthly backcasts in the quarter after the target quarter. It can be
seen from the table that for the short-term forecasts and nowcasts, only the
random forest beats the prevailing mean at all horizons. It is also the most
precise forecast for all the short term forecasts and the first two nowcasts.
The Diebold-Mariano test shows statistical significance for these horizons.
For the third nowcast, the LASSO is slightly more precise. The dynamic
factor model is the most precise methods when backcasting.

The AR and random projection are generally no more precise than the
dynamic factor model. The MIDAS model is slightly more precise than the
DFM at four horizons but is less precise at four horizons. The LASSO, elastic
net, and random subset regression are slightly more precise than the dynamic
factor at most forecasting and nowcasting horizons but less precise when
backcasting. This suggests that over the entire forecast sample, the non-
linearity of the random forest does well when fore- and nowcasting. Other
methods that rely on linear combinations of the data cannot substantially
improve on the dynamic factor model. For backcasting, the dynamic factor
model clearly is the most precise approach.

Figure 2 shows the levels of RMSFEs, which generally decrease as more
information becomes available. The random forest has consistently lower
RMSFE then the other methods for the forecasting months. For the first two
nowcasting months it is also the most precise. During the last nowcasting
month, the regularization methods and the dynamic factor model catch up
with the random forest. In the backcasting months the dynamic factor
model improves substantially over the other methods. Of the other models,
the MIDAS and random projection methods remain at the upper level of
the RMSFE range.

The forecast sample contains periods of different nature, such as the
Great Moderation and the Financial Crisis. In order to evaluate the ro-
bustness of our results, Table 3 reports the (ratio of) RMSFE over three
subperiods: the Great Moderation, Financial Crisis, and the Post-Financial
Crisis period.

During the Great Moderation, the two quarter ahead forecast from all
models, with the exception of the AR model, are rouphly equivalent in
precision to that of the benchmark model for the first two months. In the last
month of the two-quarter ahead forecast, the random forest is substantially
better than the benchmark and significantly better than the DFM. As we
get closer to the target quarter, the random forest continues to provide
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Table 2
Average forecast precision over the period 1992Q1-2018Q4

Horizons Benchmarks Alternatives
PM AR DFM MIDAS LASSO EN RS RP RF

2Q.1 0.68 1.04 1.02 1.01 1.00 1.01 1.00 1.02 0.97∗

2Q.2 0.68 1.04 1.02 1.01 1.00 0.99 1.02 1.02 0.95∗∗

2Q.3 0.67 1.03 1.01 1.01 0.99 0.99 0.99 1.01 0.92∗∗

1Q.1 0.67 1.03 1.00 1.01 0.98 0.99 1.00 1.01 0.94∗∗

1Q.2 0.67 1.03 0.99 1.00 0.98 0.99 0.99 1.00 0.95∗

1Q.3 0.67 1.02 0.99 0.97 1.01 1.00 0.97 0.99 0.92∗∗

N.1 0.67 1.01 0.98 0.97 0.94∗ 0.95∗ 0.95∗∗ 0.99 0.91∗∗

N.2 0.67 1.01 0.95 0.95 0.93 0.92 0.93 0.97 0.90∗∗

N.3 0.67 0.96 0.88 0.93 0.87 0.87 0.90 0.94 0.88
B.1 0.67 1.00 0.83 0.97 0.84 0.86 0.91 0.96 0.89
B.2 0.67 1.00 0.79 0.98 0.82 0.87 0.90 0.96 0.88
Note: The table reports the results over the entire forecast sample. The first column
reports the periods of origin of the forecast: XQ.Y denotes a X quarters ahead forecast
made in the Y-th month in the quarter, N.Y denotes nowcasts made in the Y-th month
of the quarter, and B.Y denote backcasts made in the Y-th month of the quarter. For the
prevailing mean (PM) the entries (in italics) refer to the level of the RMSFE; for all other
models the entries refer to the RMSFE relative to the RMSFE of the PM model. Grey cells
indicate the model with the lowest RMSFE. AR denotes the autoregressive model, DFM
the dynamic factor model, MIDAS the mixed-data sampling factor-augmented model,
LASSO the least absolute shrinkage and selection operator, EN the elastic net, RS the
random subset selection, RP the random projection, RF the random forest. ∗, ∗∗, ∗∗∗

indicate statistical significance at 10, 5 and 1 percent levels in a one-sided Diebold-Mariano
test relative to the DFM (the significance levels should be interpreted with caution due
to the use of expanding windows).

Figure 2: RMSFE over varying forecast horizons

Note: The table reports the level of the RMSFE of the different methods. For further
details see the footnote of Table 2.
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the most precise predictions one quarter ahead and also the most precise
nowcasts by a substantial margin. The most precise backcasts, however,
come from the dynamic factor model. The AR and MIDAS models fail to
beat the prevailing mean benchmark at any horizon.

During the Financial Crisis, the prevailing mean forecast is substantially
less precise in absolute terms. Still, most models fail to deliver more precise
one and two quarter ahead forecasts than this benchmark. The exception is,
the random forest, which is more precise than the prevailing mean over all
forecasting horizons and offers improvements of up to 18% aginst the pre-
vailing mean. For the now- and backcast all methods improve substantially
over the prevailing mean with the LASSO being the most precise, with the
dynamic factor model and elastic net trailing by a small amount. The gain
in relative forecasting accuracy can amount to 35% against the prevailing
mean

Since the Financial Crisis, the random forest has the most precise fore-
casts, nowcasts, and first backcast with improvements of up to 13%. The
DFM also improves over the benchmark when nowcasting and backcasting
albeit to a smaller degree than the random forecast. The MIDAS and regu-
larization methods fail to considently beat the benchmark over this period.
The random subspace methods, in particular the random subset regression,
provide subsantial improvements when nowcasting and backcasting, even if
the forecasts are not consistently better than the benchmark.

Table 4 reports the RMSFE in different economic states. During reces-
sions, the prevailing mean has a relatively large RMSFE and all methods,
with the exception of the AR model, improve over it over all horizons. This
holds especially for the late nowcasts and backcast, when the forecasting
gains amount to 37% for the best model. The random forest provides the
relatively most precise two-quarter ahead forecasts. The LASSO model is
the most precise for the one quarter ahead forecasts and nowcast for most
months. The dynamic factor model provides the most precise backcast.

Over periods of moderate growth, the random forest provides the most
precise forecasts at all horizons. It is the only methods that consistently
beats the prevailing mean benchmark. During expansions, the prevailing
mean benchmark is considerably more precise than during the recessions and
moderate growth. Most other methods provide similarly precise forecasts
but cannot consistently beat the prevailing mean. Compared to the dynamic
factor model, the random forecast provides more precise nowcasts, whereas
the regularized methods provide considerably less precise nowcasts.

A question is whether the forecast precision of the different methods is
due to an increase or reduction in biases or standard deviations over the
benchmark. Table 5 displays (ratios of) the absolute forecast biases. The
prevailing mean results show that the bias is the relatively smaller compo-
nent for this benchmark forecast. The biases of the dynamic factor model,
MIDAS, random subset, and random projection methods are comparable to
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Table 3
Forecast precision evaluated over different subperiods

Horizons Benchmarks Alternatives
PM AR DFM MIDAS LASSO EN RS RP RF

Great Moderation (N= 65)
2Q.1 0.53 1.06 1.00 1.03 1.00 1.03 1.00 1.05 1.03
2Q.2 0.53 1.06 1.00 1.02 1.01 0.99 1.05 1.02 1.00
2Q.2 0.53 1.05 0.99 1.02 0.95 0.95 1.00 0.98 0.92∗

1Q.1 0.53 1.05 0.97 1.03 1.03 1.02 1.02 1.02 0.96
1Q.2 0.53 1.05 0.98 1.02 1.00 1.01 1.00 1.00 0.95
1Q.3 0.53 1.04 0.98 1.01 1.04 0.99 0.98 0.98 0.92∗

N.1 0.53 1.04 0.98 1.02 1.00 1.01 0.97 1.03 0.94∗

N.2 0.53 1.04 0.98 1.02 1.01 0.99 0.95 1.02 0.92∗∗

N.3 0.53 1.02 0.95 1.01 0.99 0.99 0.97 1.00 0.91∗

B.1 0.53 1.03 0.92 1.02 0.99 0.98 0.99 1.03 0.97
B.2 0.53 1.03 0.88 1.00 0.98 0.98 0.97 1.02 0.94
Financial Crisis (N= 12)
2Q.1 1.36 1.02 1.02 1.00 1.00 0.99 0.99 0.99∗ 0.92∗

2Q.2 1.36 1.02 1.02 1.00∗ 0.97 0.97 0.99 1.00 0.90∗

2Q.3 1.36 1.03 1.02 1.00 0.98 1.00 0.99 1.01 0.91∗

1Q.1 1.36 1.02 1.02 1.01 0.95 0.97 0.99 1.00 0.94∗

1Q.2 1.36 1.02 1.01 0.99 0.95 0.95 0.99 1.00 0.95
1Q.3 1.35 1.02 0.99 0.94∗ 0.98 0.97 0.96∗ 0.99 0.92∗

N.1 1.35 1.01 0.99 0.93∗∗ 0.90∗∗ 0.92∗∗ 0.95∗ 0.96 0.90∗

N.2 1.35 1.01 0.93 0.89 0.78∗ 0.79 0.91 0.93 0.88
N.3 1.35 0.93 0.78 0.84 0.69∗ 0.71∗ 0.85 0.87 0.85
B.2 1.35 0.99 0.71 0.92 0.65∗ 0.72 0.83 0.90 0.82
B.1 1.35 0.99 0.66 0.96 0.65 0.69 0.83 0.91 0.83
Post Financial Crisis (N= 31)
2Q.1 0.52 1.03 1.04 1.00∗∗ 1.02 1.02 1.03 1.05 0.95∗

2Q.2 0.52 1.03 1.05 1.02 1.03 1.04 1.02 1.08 0.97
2Q.3 0.52 1.01 1.03 1.03 1.08 1.05 1.02 1.08 0.97
1Q.1 0.52 1.02 1.01 1.01 0.97 0.96 0.98 1.02 0.92∗

1Q.2 0.52 1.02 0.97 0.98 1.00 1.04 0.99 1.02 0.92
1Q.3 0.52 0.98 0.99 0.97 1.04 1.11 0.97 1.02 0.92
N.1 0.52 0.96 0.98 0.98 0.93 0.92 0.92 0.99 0.88
N.2 0.52 0.96 0.96 0.97 1.12 1.05 0.92 0.98 0.90
N.3 0.51 0.89 0.93 0.97 1.00 0.98 0.90 0.96 0.88∗

B.1 0.51 0.96 0.90 1.01 0.92 0.90 0.92 0.94 0.87
B.2 0.51 0.96 0.88 1.00 0.86 1.02 0.93 0.95 0.87

For further details see the footnote of Table 2.
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Table 4
Forecast precision over various economic states

Horizons Benchmarks Alternatives
PM AR DFM MIDAS LASSO EN RS RP RF

Recessions (N= 22)
2Q.1 1.21 1.03 1.00 0.97∗∗ 0.99 0.99 0.97 1.00 0.92∗

2Q.2 1.21 1.03 0.99 0.97∗ 0.96 0.97 0.99 1.01 0.92∗

2Q.3 1.21 1.03 0.97 0.96 0.97 0.97 0.97 1.00 0.91∗

1Q.1 1.21 1.03 0.95 0.98 0.90 0.92 0.97 0.99 0.91∗∗

1Q.2 1.21 1.03 0.94 0.96 0.88 0.90 0.94 0.98 0.92
1Q.3 1.20 1.02 0.95 0.92 0.92 0.91 0.93 0.97 0.89∗∗

N.1 1.20 1.00 0.93 0.94 0.88∗ 0.89 0.91 0.95 0.89∗

N.2 1.20 1.00 0.87 0.91 0.82 0.83 0.88 0.93 0.88
N.3 1.20 0.92 0.75 0.87 0.76 0.76 0.83 0.88 0.85
B.1 1.20 0.99 0.68 0.94 0.73 0.77 0.84 0.91 0.84
B.2 1.20 0.99 0.63 0.96 0.66 0.69 0.84 0.91 0.83
Moderate Growth (N= 29)
2Q.1 0.53 1.06 1.07 1.09 1.06 1.07 1.05 1.07 0.96∗

2Q.2 0.53 1.06 1.09 1.10 1.11 1.03 1.06 1.06 0.89∗∗

2Q.3 0.52 1.06 1.12 1.12 0.99 1.03 1.05 1.05 0.84∗∗

1Q.1 0.52 1.04 1.12 1.11 1.21 1.14 1.09 1.08 0.97
1Q.2 0.52 1.04 1.12 1.11 1.17 1.14 1.11 1.07 0.94
1Q.3 0.52 1.05 1.07 1.09 1.14 1.10 1.07 1.05 0.89∗

N.1 0.52 1.02 1.11 1.06 1.06 1.08 1.04∗ 1.08 0.94
N.2 0.52 1.02 1.14 1.06 1.00 0.97∗ 1.04∗ 1.08 0.89∗∗

N.3 0.52 0.97 1.09 1.06 0.97 0.91∗∗ 1.06 1.06 0.84∗∗

B.1 0.52 1.02 1.07 1.08 0.96 0.95 1.02 1.07 0.90∗

B.2 0.52 1.02 1.05 1.09 1.02 1.03 1.03 1.08 0.89∗∗

Expansionary Growth (N= 57)
2Q.1 0.39 ∗∗ 1.03 1.06 1.08 0.99∗ 1.02 1.05 1.07 1.14
2Q.2 0.39 ∗ 1.03 1.05 1.08 1.01 1.03 1.06 1.04 1.10
2Q.2 0.39 ∗ 1.02 1.07 1.08 1.06 1.03 1.04 1.02∗ 1.04
1Q.1 0.39 1.03 1.06 1.05 1.06 1.07 1.06 1.04 1.04
1Q.2 0.39 1.03 1.06 1.06 1.15 1.16 1.08 1.02 1.05
1Q.3 0.39 1.03 1.06 1.04 1.21 1.22 1.01 1.02 1.06
N.1 0.39 1.03 1.05 1.03 1.04 1.03 1.00 1.05 0.99
N.2 0.39 1.03 1.06 1.03 1.22 1.16 1.00∗ 1.02 0.98∗∗

N.3 0.39 1.08 1.07 1.02 1.11∗ 1.16 0.99 1.01 1.02
B.1 0.39 1.03 1.06 1.00 1.07 1.05 1.03 1.04 1.04
B.2 0.39 1.03 1.01 0.95 1.11 1.22 1.01 1.01 1.01

For further details see the footnote of Table 2.
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or larger than that of the prevailing mean forecast. Only the LASSO, elastic
net and the random forest can reduce the absolute bias with the random
forest offering the largest reduction in bias on average.

Table 6 shows the (ratios of) the forecast standard deviations. In con-
trast to the results for the bias, all methods, except the AR model, tend
to reduce the forecast standard deviation compared to the prevailing mean
forecast. For the first eight horizons, the random forest offers the largest
reduction by a substantial margin. For the nowcast, all methods except the
AR model, offer substantial reductions. For the backcast, finally, the dy-
namic factor model reduced the forecast standard deviation by the largest
amount. Overall, for most methods the improvements in MSFE over the
benchmark can be explained by an improvement in this component. The
random forest is the only method that offers substantial reduction in biases
and standard deviation over all horizons.

Table 5
Absolute forecast bias over the period 1992Q1-2018Q4

Model Benchmark Alternative
PM AR DFM MIDAS LASSO EN RS RP RF

2Q.1 0.17 1.07 1.03 1.12 0.97 0.96 1.08 1.22 0.85
2Q.2 0.17 1.07 1.04 1.14 1.00 1.05 1.11 1.33 0.92
2Q.3 0.17 1.05 1.05 1.15 1.02 0.97 1.11 1.33 0.88
1Q.1 0.17 1.03 1.06 1.10 0.89 0.92 1.05 1.20 0.84
1Q.2 0.17 1.03 1.10 1.13 0.90 0.95 1.11 1.31 0.92
1Q.3 0.16 0.96 1.14 1.12 1.05 1.03 1.11 1.30 0.82
N.1 0.16 0.95 1.15 1.08 0.93 0.93 1.02 1.15 0.79
N.2 0.16 0.95 1.17 1.10 0.85 0.83 1.08 1.27 0.86
N.3 0.16 0.72 1.13 1.11 1.04 0.93 1.12 1.24 0.81
B.1 0.16 0.98 1.05 1.09 0.83 0.86 1.00 1.15 0.77
B.2 0.16 0.98 0.98 1.18 0.91 0.90 1.06 1.27 0.86

Note: See footnote of Table 2.

Table 6
Forecast standard deviation over the period 1992Q1-2018Q4

Model Benchmark Alternative
PM AR DFM MIDAS LASSO EN RS RP RF

2Q.1 0.65 1.03 1.02 1.01 1.00 1.01 0.99 1.01 0.98
2Q.2 0.65 1.03 1.02 1.00 1.00 0.99 1.01 1.00 0.95
2Q.3 0.65 1.03 1.01 1.00 0.99 0.99 0.99 0.99 0.93
1Q.1 0.65 1.03 1.00 1.01 0.99 0.99 1.00 1.00 0.95
1Q.2 0.65 1.03 0.99 0.99 0.99 0.99 0.99 0.98 0.95
1Q.3 0.65 1.03 0.98 0.96 1.01 1.00 0.96 0.97 0.93
N.1 0.65 1.01 0.97 0.97 0.94 0.95 0.95 0.98 0.92
N.2 0.65 1.01 0.94 0.94 0.94 0.92 0.92 0.95 0.90
N.3 0.65 0.97 0.86 0.92 0.86 0.86 0.89 0.91 0.88
B.1 0.65 1.00 0.81 0.96 0.84 0.86 0.90 0.95 0.89
B.2 0.65 1.00 0.77 0.97 0.82 0.86 0.89 0.94 0.88
Note: See footnote of Table 2.
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Table 7
Forecast accuracy of forecast combinations

PM EA IP IP10 OLS OLS40
2Q.1 0.68 0.99∗∗ 0.99∗∗ 0.99∗∗ 1.04 1.09
2Q.2 0.68 0.98∗∗ 0.98∗∗ 0.98∗∗ 1.04 1.13
2Q.3 0.67 0.97∗∗ 0.96∗∗ 0.97∗∗ 0.97 1.05
1Q.1 0.67 0.98∗ 0.98 0.98 1.13 1.24
1Q.2 0.67 0.97∗ 0.97∗ 0.97∗ 1.12 1.17
1Q.3 0.67 0.95∗∗ 0.95∗∗ 0.95∗∗ 0.99 1.07
N.1 0.67 0.94∗∗∗ 0.94∗∗∗ 0.94∗∗∗ 1.02 1.11
N.2 0.67 0.91∗∗∗ 0.91∗∗∗ 0.91∗∗∗ 1.04 1.08
N.3 0.67 0.87 0.86 0.87 0.93 0.95
B.1 0.67 0.87 0.86 0.87 0.88 0.92
B.2 0.67 0.85 0.84 0.85 0.81 0.83
Notes: EA denotes the equally weighted forecast combination, IP forecast combinations
with weights inversely proportional to the MSFE, IP10 forecast combinations with weights
inversely proportional to the MSFE where the weights are calculated using a rolling win-
dow of 10 quarters, OLS denotes forecast combinations with weights based on the regres-
sion of Granger and Ramanathan (1984), and OLS40 denotes forecast combinations with
weights based on the regression of Granger and Ramanathan (1984) in a rolling window
of 40 quarters. Grey cells indicate the forecast combination with the lowest RMSFE.

4.2 Forecast Combinations

While the random forest tends to provide the most precise forecasts over
many economics states, this is not uniformly so. It may therefore be worth
to consider forecast combinations, where we combine the seven models using
dimension reduction. Table 7 reports the results of the forecast combination
schemes. The equally weighted forecast combinations and the combinations
with weights inversely proportional to past MSFE are extremely similar.
The combination scheme with weights based on an expanding window of
MSFEs are marginally better than the other two. Compared to the forecasts
in Table 2, the combinations provide forecasts that are very close to the
model with the lowest MSFE for all horizons. In fact, they are the second
most precise forecasts for nine horizons, for the third month nowcast, they
are the most precise forecast and for the second month backcast the third
most precise forecast. Using OLS weights, in contrast, results in less precise
forecasts and nowcasts, which reiterates that forecast biases are not a first
order concern in this application.

Forecast combinations using equal and inversely proportional weights,
therefore, offers a practical way to ensure that forecasts, nowcasts, and back-
casts are very close to the best individual model or even provides the most
precise predictions. This is particularly useful as our results indicate that
no individual method provides the best predictions in all circumstances.
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4.3 Forecast Contributions

Figure 3 to 6 show the contributions of the different time series in each of the
five categories to the forecasts of the dynamic factor model, LASSO, random
subset regression, and the random forest. We concentrate on these forecasts
as they represent the different classes of models and are the respective models
with the best forecast accuracy. The top left graph in each figure shows the
contributions to the backcast, the top right figure the contribution to the
nowcast, the bottom left the contribution to the one quarter ahead forecast,
and the bottom right to the two quarter ahead forecast. The contributions
are averaged over the months in each quarter to keep the number of plots
manageable.

Figure 3
Contributions of the time series to dynamic factor model forecasts
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Note: Category bars indicate the relative part of GDP estimate explained by the five time
series categories. The black solid line represents the forecast of GDP by the respective
method.

The graphs for the dynamic factor model in Figure 3 show that the time
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series in the Surveys category had the largest contribution to the forecasts
with the relatively largest contribution in the one quarter ahead forecast
as relatively more timely survey data arrive. For the nowcasts, the surveys
still have the largest, if somewhat smaller, importance and for backcasts the
arrival of hard data for the target quarter means that they now contribute
more to the backcast. The importance of surveys for nowcasts is in line
with the findings of the literature, for example, Giannone et al. (2008) and
Bańbura and Rünstler (2011). Gayer and Marc (2018) suggest that the
relationship between hard and soft predictors might have changed before
and after the Financial Crisis but our results show no such change for the
Netherlands.

Figure 4
Contributions of the time series to LASSO forecasts
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Note: See footnote of Figure 3.

Figure 4 reports the contributions of the predictor categories when fore-
casting with the LASSO. Three observations stand out. First, the contri-
butions for the predictions in the first half of the Great Moderation most
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predictions were based only on the intercept, which is likely due to the low
variability of GDP growth during this period. This also explains the results
in Table 3, where the LASSO produced results with very similar precision
to that of the prevailing mean forecast over the great moderation period.
Second, in the subsequent periods, the LASSO makes more varied use of the
information that also fluctuated substantially over time. The two-quarter
ahead forecasts makes little use of surveys and relies mainly on hard data.
Surveys are more important in one-quarter ahead forecasts, nowcasts and
backcasts. However, their importance seemed to decline already before the
financial crisis.

Figure 5
Contributions of the time series to random subset regression forecasts
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Note: RS: random subset regression. See footnote of Figure 3.

The contributions when using random subset regression shown in Fig-
ure 5 are considerably more equal for the different categories and relative
constant throughout time and forecast horizon. Surveys are the most im-
portant category, followed by Production & Sales and Prices.
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Figure 6
Contributions of the time series to the random forest forecasts

0.0

0.5

1.0

1995 2000 2005 2010 2015
Years

G
D

P
 g

ro
w

th
 (

%
)

Category Financial Other Prices Production & Sales Surveys

RF backcast contribution

0.0

0.5

1.0

1995 2000 2005 2010 2015
Years

G
D

P
 g

ro
w

th
 (

%
)

Category Financial Other Prices Production & Sales Surveys

RF nowcast contribution

0.00

0.25

0.50

0.75

1.00

1995 2000 2005 2010 2015
Years

G
D

P
 g

ro
w

th
 (

%
)

Category Financial Other Prices Production & Sales Surveys

RF 1Q quarter ahead contribution

0.00

0.25

0.50

0.75

1.00

1995 2000 2005 2010 2015
Years

G
D

P
 g

ro
w

th
 (

%
)

Category Financial Other Prices Production & Sales Surveys

RF 2Q ahead contribution

Notes: RF: random forest. See footnote of Figure 3.

A similar picture emerges for the random forest. Figure 5 displays a
more balanced and steady use of the predictors in the different categories.
The importance of survey data, which had a sizable but non-dominant role
before the crisis, remained strong. predictors in the Production & Sales cat-
egory play an evenly large role and the remaining predictors also contribute
throughout. Again, the difference between the forecast horizons is minimal.

5 Conclusion

In this paper, we investigate whether a range of statistical methods often
attributed to the machine learning literature can deliver accurate short term
forecasts, nowcasts, and backcasts of Dutch GDP.

Our findings suggest that, over the entire forecast period, the random
forest delivers the most accurate forecast and nowcasting, whilst the dynamic
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factor model has the highest forecasting accuracy for backcasting, especially
during recessions. Regularization methods perform very well, during the
financial crisis in particular. Since the financial crisis, the random forest
has provided the most precise forecast and nowcasts by, for some horizons,
substantial margins.
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A Appendix

Table A.1
Macroeconomic time series of various economic indicators transformed into growth rates

No. predictor transformation
ln. dif. fil. sa. source start end link publ. delay

1 Av. daily prod. - prod. industries 1 1 3 NSA CBS jan 1965 jan 2019 link 2
2 Av. daily prod. - industry 1 1 3 NSA CBS jan 1965 jan 2019 link 2
3 Ind. prod. - cap. goods industry 1 1 3 NSA ECB jan 1970 jan 2019 restricted 2
4 Cons. exp. - households, dom. cons. 1 1 3 NSA CBS feb 1977 jan 2019 link 2
5 Ind. prod. - Manufacture tobacco 1 1 3 NSA ECB jan 1965 jan 2019 restricted 2
6 Ind. prod. - Manufacture wearing apparel 1 1 3 NSA ECB jan 1970 jan 2019 restricted 2
7 Ind. prod. - Manufacture motor vehicles/(semi-)trailers 1 1 3 NSA ECB jan 1985 jan 2019 restricted 2
8 Ind. prod. - Manufacture other transport equipment 1 1 3 NSA ECB jan 1970 jan 2019 restricted 2
9 Ind. prod. - Manufacturing 1 1 3 SA ECB dec 1979 jan 2019 restricted 2
10 Ind. prod. - Manufacture of textiles 1 1 3 SA ECB jan 1980 jan 2019 restricted 2
11 Ind. prod. - Printing/reproduction of recorded media 1 1 3 SA ECB jan 1980 jan 2019 restricted 2
12 Ind. prod. - Constr. 1 1 3 SA ECB jan 1985 jan 2019 restricted 2
13 Ind. prod. - MIG capital goods ind. 1 1 3 SA ECB jan 1970 jan 2019 restricted 2
14 Belgium, Retail trade excl. fuel, motor vehicles/cycles 1 1 3 SA ECB jan 1970 jan 2019 restricted 2
15 Germany, Total ind. (excl. constr.) 1 1 3 SA ECB jan 1965 jan 2019 restricted 2
16 Germany, Retail trade excl. fuel, motor vehicles/cycles 1 1 3 SA ECB jan 1968 jan 2019 restricted 2
17 Spain, Total ind. (excl. constr.) 1 1 3 SA ECB jan 1965 jan 2019 restricted 2
18 France, Total ind. (excl. constr.) 1 1 3 SA ECB jan 1965 jan 2019 restricted 2
19 France, Retail trade excl. fuel, motor vehicles/cycles 1 1 3 SA ECB jan 1970 jan 2019 restricted 2
20 Italy, Total ind. (excl. constr.) 1 1 3 SA ECB jan 1965 jan 2019 restricted 2
21 Germany, Total ind. 1 1 3 SA ECB mrt 1978 jan 2019 restricted 2
II. Surveys (N = 36)
Table continued on next page
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Macroeconomic time series of various economic indicators transformed into growth rates (continued)
No. predictor transformation

ln. dif. fil. sa. source start end link publ. delay
22 Prod. conf. - Headline 0 1 3 SA ES jan 1985 feb 2019 link 1
23 Constr. conf. - Headline 0 1 3 SA ES jan 1985 feb 2019 link 1
24 Constr. conf. - Building development past 3 months 0 1 3 SA ES jan 1985 feb 2019 link 1
25 Constr. conf. - Evolution current overall order books 0 1 3 SA ES jan 1985 feb 2019 link 1
26 Constr. conf. - Employment expect. next 3 months 0 1 3 SA ES jan 1985 feb 2019 link 1
27 Ind. conf. - Headline 0 1 3 SA ES jan 1985 feb 2019 link 1
28 Ind. Confidence - Production trend observed in recent months 0 1 3 SA ES jan 1985 feb 2019 link 1
29 Ind. Confidence - Assessment of order-book levels 0 1 3 SA ES jan 1985 feb 2019 link 1
30 Ind. Confidence - Assessment of stocks of finished products 0 1 3 SA ES jan 1985 feb 2019 link 1
31 Ind Confidence - Production expectations for the months ahead 0 1 3 SA ES jan 1985 feb 2019 link 1
32 Ind. Confidence - Employment expectations for the months ahead 0 1 3 SA ES jan 1985 feb 2019 link 1
33 Cons. conf. - Headline 0 1 3 SA ES jan 1985 feb 2019 link 1
34 Cons. conf. - Financial situation over last 12 months 0 1 3 SA ES jan 1985 feb 2019 link 1
35 Cons. conf. - Financial situation over next 12 months 0 1 3 SA ES jan 1985 feb 2019 link 1
36 Cons. conf. - General economic situation over last 12 months 0 1 3 SA ES jan 1985 feb 2019 link 1
37 Cons. conf. - General economic situation over next 12 months 0 1 3 SA ES jan 1985 feb 2019 link 1
38 Cons. conf. - Unemployment expectations over next 12 months 0 1 3 SA ES jan 1985 feb 2019 link 1
39 Cons. conf. - Major purchases at present 0 1 3 SA ES jan 1985 feb 2019 link 1
40 Cons. conf. - Major purchases over next 12 months 0 1 3 SA ES jan 1985 feb 2019 link 1
41 Cons. conf. - Savings at present 0 1 3 SA ES jan 1985 feb 2019 link 1
42 Cons. conf. - Savings over next 12 months 0 1 3 SA ES jan 1985 feb 2019 link 1
43 Cons. conf. - Statement on financial situation of household 0 1 3 SA ES jan 1985 feb 2019 link 1
44 BNB-indicator, gross-index 0 1 3 SA BNB jan 1985 feb 2019 link 1
45 Belgium, Cons. confidence 0 1 3 SA ES jan 1985 feb 2019 link 1
46 Germany, Cons. confidence 0 1 3 SA ES jan 1985 feb 2019 link 1
47 France, Cons. confidence 0 1 3 SA ES jan 1985 feb 2019 link 1
Table continued on next page
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Macroeconomic time series of various economic indicators transformed into growth rates (continued)
No. predictor transformation

ln. dif. fil. sa. source start end link publ. delay
48 Italy, Cons. confidence 0 1 3 SA ES jan 1985 feb 2019 link 1
49 Belgium, Ind. confidence 0 1 3 SA ES jan 1985 feb 2019 link 1
50 Germany, Ind. confidence 0 1 3 SA ES jan 1985 feb 2019 link 1
51 Italy, Ind. confidence 0 1 3 SA ES jan 1985 feb 2019 link 1
52 United Kingdom, Ind. confidence 0 1 3 SA ES jan 1985 feb 2019 link 1
53 United Kingdom, Cons. confidence 0 1 3 SA ES jan 1985 feb 2019 link 1
54 Ind. Confidence - (CBS definition) 0 1 3 SA CBS jan 1985 feb 2019 link 1
55 Ind. Confidence - Prod. expect, months ahead (CBS definition) 0 1 3 SA CBS jan 1985 feb 2019 link 1
56 Ind. Confidence - Ass. of order-book levels (CBS definition) 0 1 3 SA CBS jan 1985 feb 2019 link 1
57 Ind. Confidence - Ass. of stocks of fin. products (CBS definition) 0 1 3 SA CBS jan 1985 feb 2019 link 1
III. Financial (N = 8)
58 Loans to the private sector 1 1 3 NSA ECB dec 1982 jan 2019 restricted 2
59 M1 1 2 3 NSA ECB jan 1980 jan 2019 restricted 2
60 M3 (money in circulation inclusive) 1 2 3 NSA ECB jan 1970 jan 2019 restricted 2
61 Interest rate (short term) - euro 0 1 3 NSA DNB nov 1984 feb 2019 restricted 1
62 Loans on mortgage (nominal rate 5 to 10 years mortgage) 0 1 3 NSA ECB jan 1980 jan 2019 link 2
63 Interest rate (long term) 0 1 3 NSA DS jan 1965 mrt 2019 NLGBD10 0
64 Share index, AEX 1 1 3 NSA DS jan 1983 mrt 2019 AMSTEOE 0
65 Share index, Amsterdam Midkap-index 1 1 3 NSA DS jan 1983 mrt 2019 AMSMKAP 0
IV. Prices (N = 14)
66 Exchange rate, US-Dollar per Euro 0 1 3 NSA ECB jan 1965 feb 2019 restricted 1
67 Housing price 1 2 3 NSA CBS jan 1976 feb 2019 link 1
68 Consumerprice index, total CPI, all households 1 2 3 NSA CBS jan 1965 feb 2019 link 1
69 Consumerprice index, underlying inflation 1 2 3 NSA CBS jan 1976 feb 2019 link 1
70 World market commodity prices, overall 1 2 3 NSA HWWI sep 1978 feb 2019 link 1
71 World market commodity prices, industrial materials 1 2 3 NSA HWWI sep 1978 feb 2019 link 1
Table continued on next page
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Macroeconomic time series of various economic indicators transformed into growth rates (continued)
No. predictor transformation

ln. dif. fil. sa. source start end link publ. delay
72 World market commodity prices, agric. & ind. materials 1 2 3 NSA HWWI sep 1978 feb 2019 link 1
73 World market commodity prices, metals 1 2 3 NSA HWWI sep 1978 feb 2019 link 1
74 World market commodity prices, energy-components 1 2 3 NSA HWWI sep 1978 feb 2019 link 1
75 Producer prices, total intermed. & fi. products (dom. market) 1 2 3 NSA CBS jan 1981 jan 2019 link 2
76 Producer prices, consumer goods (dom. market) 1 2 3 NSA ECB jan 1976 jan 2019 restricted 2
77 Producer prices, intermediate goods (dom. market) 1 2 3 NSA ECB jan 1976 jan 2019 restricted 2
78 Producer prices, intermediate & final products (for. market) 1 2 3 NSA CBS jan 1981 jan 2019 link 2
79 Producer prices, energy (dom. market) 1 2 3 NSA ECB jan 1980 jan 2019 restricted 2
V. Other (N = 4)
80 Unemployment 0 1 3 SA ES jan 1983 feb 2019 link 1
81 Issued vehicle registration certificates 1 1 3 NSA RAI jan 1965 feb 2019 link 1
82 Bankruptcies 1 1 3 NSA CBS jan 1965 feb 2019 link 1
83 Hourly wages (collective labour agreement), industry 1 1 3 NSA CBS jan 1972 feb 2019 link 1
Quarterly variables (N = 1)
84 Gross domestic product (GDP) 1 1 3 SA CBS 1970Q1 2018Q4 link 3
Note: The table presents the transformations of the monthly series that are used for estimation of forecasting models. Transformation: ln.: 0 = no logarithm, 1 = logarithm; dif.: degree
of differencing 1 = first difference, 2 = second difference; fil.: moving average filter of degree n; sa: SA = seasonally adjusted at the source, NSA = not seasonally adjusted, adjusted with
X12-ARIMA; source: CBS = Statistics Netherlands, BNB = National Bank of Belgium, DNB = National Bank of the Netherlands, DS: Datastream, ECB: European Central Bank, ES
= Eurostat, HWWI = Hamburg Institute of International Economics, RAI = RAI Association; start: Starting year and month of the series, end: Final year and month of the series;
code: link = link to the data, restricted = series not publicly available, code = Refinitiv code (only available for subscribed users); publ. delay: publication delay of the series in months.
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Online Appendix: Details of the nowcasting
models

Dynamic factor model

Consider a vector of n stationary monthly series xm = (x1,m, . . . , xn,m)′,
with monthly time index m = 1, 2, . . . , Tm, which have been standardized
to have zero mean and unit variance. The dynamic factor model is

xm = Λfm + ξm, ξm ∼ N(0,Σξ)

fm =

p∑
i=1

Aifm−i +Bηm, ηm ∼ N(0, Iq)

where fm is a q× 1 vector of factors, Λ is a n× q matrix of factor loadings,
Ai is a q × q matrix of coefficients, and ξm and ηm are n × 1 and q × 1
vectors of disturbances.

The latent monthly GDP growth, y∗m, is related to the common factors
through

y∗m = λ′fm + εm, εm ∼ N (0, σ2
ε) (1)

where λ is the vector of loading coefficients of the factors on latent GDP
growth. The observed quarterly GDP growth series, yt, with quarterly time
index t = 1, 2, . . . , Tq, is then

yt = (y∗3t + y∗3,t−1 + y∗3,t−2)/3

The aggregation for the quarterly GDP growth implies that ym is in terms of
3-month growth rates. The state space form contains the monthly quarterly
GDP growth in the third month of the respective quarter with the remaining
observations treated as missing

ym =

{
y3t, t = 1, 2, . . . , T
unobserved, otherwise

The literature estimates the matrix of factor loadings, Λ, via a static
principal components analysis applied to a balanced sub-sample of the data,
where observations in periods with missing data are discarded. In our data
set, however, only the rows of the first few observations are discarded, which
are missing as the result of vertical alignment due to publication lags. The
static principal component analysis also gives sample estimates of the com-
mon factors.

The number of common factors and the number of lags in the vector
autoregressive process need to be specified. We take the equally weighted
average of forecasts over a range of values with the maximum value of q
and p set to six, see Kuzin et al. (2013) and Jansen et al. (2016) for similar
choices.
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Mixed-data sampling factor-augmented model

The MIDAS model of Ghysels et al. (2007) has been adapted for nowcasting
by Marcellino and Schumacher (2010). The purpose of MIDAS is to jointly
model predictors of different frequency, here quarterly GDP and monthly
economic indicators. In the factor-augmented MIDAS model, factors are
extracted at the monthly frequency and then linked to lower frequency GDP
growth. The model for h-period ahead GDP growth, yt+h, in this model is

yt+h = α+ β′C(LM ;θ)f
(3)
t + εt+h

C(LM ;θ) =

K∑
k=0

c(k,θ)Lk
M

where Lk
M denotes the monthly lag operator for skip-sampled lag k of the

predictor at time t, α is a scalar, f
(3)
t the skip-sampled factors extracted from

the monthly indicators , where the superscript three indicates the skip sam-
pling of monthly indicators to quarterly frequency. Various specifications of
nonlinear weighting schemes C(LM ;θ) can be employed to parsimoniously
parameterize the coefficients (Ghysels et al., 2007).

The mixed-data sampling model is estimated with ordinary or nonlin-
ear least squares for the unrestricted or restricted model. The restricted
model uses the exponential Almon lag and the unrestricted model uses skip
sampling.

We obtain estimates of the factors via principal components on a skip
sampled data set including the lags of the predictors.

Regularization techniques

We use the least absolute shrinkage and selection operator (LASSO) and
the elastic net in this paper. We also obtained results for ridge regression
and adaptive LASSO. However, the results were strictly dominated by the
LASSO and elastic net and for brevity we therefore omit these results.

The LASSO of Tibshirani (1996) performs both regularization and pre-
dictor selection by imposing an ℓ1 penalty in the estimation of the coeffi-
cients. As the response predictor and predictors are of different frequencies,
the mixed-data sampling approach of Section 2.1 is employed using skip
sampling for the monthly predictors.

Given a sample of lengthN consisting of n covariates xm := (x1,m, x2,m, . . . , xn,m),
∀m ∈ {1, 2, . . . , Tm}, one obtains the parameter estimates optimizing the pe-
nalized loss function

min
β0,β

∥yh − β0ιT−h − x(3)β∥22 subject to ∥β∥21 ≤ λ

where yh is GDP growth for forecasting horizon h, ιN an N × 1 vector
of ones, x(3) a matrix of the skip-sampled versions of xi,m, β a vector of
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coefficients, ∥ · ∥p denotes the ℓp, and ιT−h an T − h × 1 vector of ones
and λ determines the extent of regularization. The optimal regularization
parameter, λ, is determined via cross-validation.

The elastic net of Zou and Hastie (2005) imposes a combination of ℓ1
and ℓ2 penalties. Similar to the LASSO, the ℓ1 norm selects parameters by
shrinking some to zero but it also shrinks the remaining coefficients towards
zero through the use of the ℓ2 norm. The elastic net regression is

min
β0,β

∥yh − β0ιT−h − x(3)β∥22 subject to α∥β∥21 + (1− α)∥β∥22 ≤ λ

α determines the relative extent of regularization performed by both norms
and is determined via cross-validation.

Random subspace regression

Model averaging has been shown to reduce the MSFE. Based on this ob-
servation, Elliott et al. (2013) introduce complete subset regression, where
forecasts are constructed from all combinations of k predictors out of the
varible pool. The forecasts are then averaged. If, however, the predictor pool
is large the number of combinations of k predictors is prohibitively large. A
solution is to take R randomly chosen subsets of predictors. Boot and Nib-
bering (2019) show that this approximates the complete subset regression
for mildly large R, such as R = 1000.

In the nowcasting context, the regression is

yt+h = x
(3)
t RβR + εR,t+h

where R is an K×k random selection matrix, βR the associated k×1 vector
of coefficients. More specifically, R is a random selection matrix that selects
random sets of k predictors out of the total available n predictors, that is, it
is a matrix of zeros except for k elements: the j, l-th element, which is unity
if the l-th predictor in the random subset regression is the j-th predictor.

A tuning parameter of this method is the size of each predictor subset,
k. Theoretical results by Boot and Nibbering (2019) suggest that k should
be chosen relatively large at about 30. The experience of Pick and Carpay
(2022) suggests that smaller k can deliver more precise forecasts. We initially
experimented with different choices of k up to 30 and our experience confirms
that smaller choices of k deliver better nowcasts. As a result we average
nowcasts over those obtained using k = 2, 3, 4, 5.

An alternative to selecting predictors would be to combine the predictors
with random weights. Boot and Nibbering (2019) discuss this option and
name it random projection. In place of a selection matrix, random projec-
tion uses a random weighting matrix, that calculates k predictors that are
weighted averages of the n predictors. For Gaussian random projections, the
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weights are drawn from a normal distribution and each entry of the matrix
R is independently and identically distributed as[

R
]
i,j

∼ N (0, 1), 1 ≤ i ≤ n, 1 ≤ j ≤ k

Multiple realizations of the random matrix R are drawn and the resulting
forecasts are averaged. Again, the choice predictor k needs to be determined.
Again, we average nowcasts over those obtained using k = 2, 3, 4, 5.

Random forest

The random forest forecast averages the forecasts of multiple decision trees.
To grow a decision tree, the space of predictor values is partitioned with
the aim of minimizing the in-sample squared error. At each partition, the
algorithm chooses a split based on one of the predictors that realizes the
largest decrease in squared error. Hence, the split of a skip-sampled predictor
that is minimizing the cost function is chosen at each node, i.e.

C =
∑
Rg

∑
tj∈Rg

(ȳRg − yj)
2

where C is the cost to be minimized, Rg for g ∈ [1, . . . , G] is the set of
partitioned responses, ȳRg is the average GDP realization within cluster Rg

and yj is the jth element of partition Rg. A tree is therefore a nonlinear
combination of the predictors and allows for a nonlinear underlying GDP.

Trees are designed to have a high degree of independence of each other
by randomly drawing a subset of predictor predictors and a subset of ob-
servations to grow any given tree. Averaging the forecasts from the trees in
the random forest therefore minimizes the variance of the average forecast.

In order to reduce overfitting, each estimation sample is divided in a
training and a validation set. The share of the training set in all estimation
samples is varied such that ω of the estimation sample is assigned to the
training set, with ω ∈ {0.6, 0.7, 0.8, 0.9} and choose κ ∈ [1, 2, . . . , 249] skip-
sampled predictors to split the tree. Subsequently, a validation set is used
to measure the performance for each κ. We use the prediction of the 400
trees that resulted in the lowest prediction error in the training set.
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