Modeling the business and financial cycle in a multivariate structural time series model

Jasper de Winter*, Siem Jan Koopman+, Irma Hindrayanto*
*De Nederlandsche Bank
${ }^{+}$Vrije Universiteit Amsterdam

International Symposium on Forecasting June 18th, 2018

Introduction

Main contributions

- Novel approach to simultaneously extract a short-term cycle and a mediumterm cycle from a panel of macroeconomic and financial time series
- and simultaneously estimate co-cyclicality of cycles
- and simultaneously mix time-series with monthly and quarterly frequencies

Motivation

- Several papers document existence of medium-term macroeconomic cycles (e.g. Comin and Gertler, 2006 and Correa-López and de Blas, 2012);
- Since the Global Financial Crisis, the policy debate has increasingly paid attention to the concept of the financial cycle. (e.g. Borio, 2014 and Drehman et al., 2012)
- There has also been a fast growing literature exploring ways to estimate financial cycles and analyzing their properties.

Conclusion

(1) We find strong evidence for the existence of a separate short-term cycle and medium-term cycle in macroeconomic and financial variables in industrialized countries
(2) Co-movement between macroeconomic and financial variables limited to the medium-term
(0) Strong concordance between the medium-term cycles of house prices and GDP. much less between credit and GDP

- bulk of the estimated movements driven by domestic rather than global factors (see paper)

Presentation Outline

(1) Estimation method
(2) Outcomes
(3) Conclusion

Unobserved Component (UC) models

- We apply the Kalman filter-smoother to an unobserved components time series model to extract multiple cycles, see Harvey (1989) and Durbin and Koopman (2012) for an overview.
- This approach has been applied to business cycle analysis, extracting one cycle, see e.g. Valle e Azevedo et al., 2006; Creal et al., 2010.
- Koopman and Lucas (2005) is one of the few papers extracting two cycles. They extract cycles from asset prices in the Unites States.

Advantages of UC models and the Kalman filter

- Estimating an unobserved components model allows for simultaneous extraction of trend, short-term cycle, medium-term cycle and error term via the Kalman filter/smoother algorithm.
- Since the Kalman filter/smoother is based on a model, researchers have the possibility to use diagnostics to estimate the fit and validity of this model and hence the accuracy of their estimates.
- The cycle frequency is also estimated instead of predetermined as in non-parametric filters and turning point methods. This feature is especially convenient for estimating financial cycles, since there is no broad consensus yet on their characteristics.

Multivariate Unobserved Component Model Framework

Model specification as in Koopman and Lucas (2005):

$$
\begin{equation*}
y_{t}=\mu_{t}+A \gamma_{t}+B \psi_{t}+\varepsilon_{t}, \quad \varepsilon_{t} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \Sigma_{\varepsilon}\right), \tag{1}
\end{equation*}
$$

y_{t} : time series in a panel with length N, μ_{t} : long-term trend, γ_{t} : short-term cycle, ψ_{t} : medium-term cycle, ε_{t} : noise.

Unobserved components μ_{t}, γ_{t} and ψ_{t} are assumed to represent unique dynamic processes and are independent of each other.

Covariances between the disturbances are non-zero. The loading matrices A and B reveal whether there is co-cyclicality between the time series in the panel. Trend is modeled as an integrated random walk process:

$$
\begin{gather*}
\mu_{t+1}=\mu_{t}+\beta_{t}, \\
\beta_{t+1}=\beta_{t}+\zeta_{t}, \quad \zeta_{t} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \Sigma_{\zeta}\right), \tag{2}
\end{gather*}
$$

Modeling the cycles

The short-term cycle $\left(\gamma_{t}\right)$ and the medium-term cycle $\left(\psi_{t}\right)$ are specified as a restricted trigonometric processes as proposed by Harvey(1989). Consider ψ_{t}, i.e.:

$$
\begin{gather*}
\binom{\psi_{t+1}}{\psi_{t+1}^{*}}=\phi_{\psi}\left[\begin{array}{cc}
\cos \lambda_{\psi} & \sin \lambda_{\psi} \\
-\sin \lambda_{\psi} & \cos \lambda_{\psi}
\end{array}\right]\binom{\psi_{t}}{\psi_{t}^{*}}+\binom{\omega_{t}}{\omega_{t}^{*}}, \\
\binom{\omega_{t}}{\omega_{t}^{*}} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma_{i, \omega}^{2}\right), \tag{3}
\end{gather*}
$$

where, $\psi_{t}=$ (medium-term) cycle, $\psi_{t}^{*}=$ 'first derivative' of the (medium-term) cycle, $\lambda_{\psi}=$ cycle frequency, $\phi_{\psi}=$ persistence parameter $\left(0<\phi_{\psi}<1\right)$, $\omega_{t}=$ disturbance term. The length of ψ_{t} is given by $p=2 \pi / \lambda_{\psi}$.

For identification of the cycle disturbance variances, A and B in Eq.(1) are restricted to be lower triangular matrices with unity as diagonal elements.

Empirical set-up

We apply the multivariate UC model to extract trends and cycles from the following variables (all in real terms):

- Gross domestic product (GDP)
- House prices (HP)
- Bank credit to private sector (CRED)
- Industrial production index (IP)

Countries analyzed:

- We consider the G7-countries (US, UK, JA, CA, DE, FR, IT) and NL

Period of analysis

- 1970Q1-2015Q1 for GDP, HP \& CRED;
- 1970M1-2015M12 for IP.

Why two cycles in one model framework?

All US series are deflated, seasonally adjusted and in natural logs.

Why two cycles in one model framework?

Estimated spectral densities (US data), series are in log-differences, 0.25π translates into a cycle with period of $\frac{2 \pi}{0.25 \pi}=8$ quarters (2 years). 0.50π translates into a cycle with period of $\frac{2 \pi}{0.25 \pi}=4$ quarters (1 year).

Why two cycles in one model framework?

Estimated spectral densities (US data), series are in log-differences.
The first peak in the spectral density of GDP is estimated at approximately 0.02π, which translates into a cycle with period of $\frac{2 \pi}{0.02 \pi}=100$ quarters, or 25 years.

Why two cycles in one model framework?

Estimated spectral densities (US data), series are in log-differences.
The second peak is at 0.08π, which translates to a period of 25 quarters, or $6 \frac{1}{4}$ year. Seems to be related to the business cycle frequency.

Why two cycles in one model framework?

Estimated spectral densities (US data), series are in log-differences.
The third and fourth peak occur at 0.13π (15 quarters; 3.8 years) and 0.19π (10 quarters; 2.6 years). Most business cycle frequencies have period of $6 \frac{1}{4}$ years.

Why two cycles in one model framework?

Estimated spectral densities (US data), series are in log-differences.
There are some local peaks in the spectral density above approximately 0.25π (or 2 years). For our study these fluctuations are not so much of interest (noise).

Why two cycles in one model framework?

Estimated spectral densities (US data), series are in log-differences.
Spec. dens. IP very similar to the spec. dens. of GDP. Small peak at cycle-length of ± 25 years, and peaks at cycles of approximately 6,4 and 3 years.

Why two cycles in one model framework?

Estimated spectral densities (US data), series are in log-differences.
Spec. dens. HP and CRED quite different from GDP and IP. Former show large peaks at cycle-length of approximately 13 years. Not much cycl. movement at higher freq's.

Why two cycles in one model framework?

Estimated spectral densities (US data), series are in log-differences.

Why two cycles in one model framework?

- Besides spectral densities we perform statistical likelihood ratio (LR) test, following Rünstler and Vlekke (2018) and Galati et al. (2016).
- We conclude that in almost all countries and variables our four variables have two cycles (exceptions: GDP in NL and IP in UK)
- Our main conjecture from analyzing the spectral densities and formal testing:
- medium-term frequencies are dominant in the house price \& credit volume variables
- short-term fluctuations are dominant for GDP \& industrial production

Model applied to our dataset

Our model once more:

$$
\begin{aligned}
y_{t} & =\left[\begin{array}{l}
y_{t}^{\mathrm{GDP}} \\
y_{t}^{\mathrm{HP}} \\
y_{c}^{\text {tRED }} \\
y_{t}^{\mathrm{IP}}
\end{array}\right]=\left[\begin{array}{l}
\text { real GDP (GDP) } \\
\text { real House Price (HP) } \\
\text { real Credit Volume (CRED) } \\
\text { real Industrial Production (IP) }
\end{array}\right], \\
& =\mu_{t}+A \gamma_{t}+B \psi_{t}+\varepsilon_{t}, \quad \varepsilon_{t} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \Sigma_{\varepsilon}\right),
\end{aligned}
$$

for $t=1, \ldots, T$, with μ_{t} is the trend, γ_{t} is the short-term cycle and ψ_{t} is the medium-term cycle component. The model is cast in state space form and estimated using the maximum likelihood method.

Graphical representation outcomes for the United States

Estimated trend $\left(\mu_{t}\right)$, short-term cycle $\left(\gamma_{t}\right)$ and medium-term cycle $\left(\psi_{t}\right)$ for (US data) GDP, HP, CRED and IP. Series are in logs.

Properties and commonality of the short-term cycle λ_{γ}

Parameter estimates of multivariate UCTSM for short-term cycle

US	UK	JA	CA	DE	FR	IT	NL
Properties cycles							
p_{γ}	5.4	6.7	3.3	7.1	4.5	3.6	3.8
ϕ_{γ}	0.99	0.99	0.98	0.99	0.97	0.98	0.97

Loading matrix A
vs. GDP // 1st column loading matrices

HP	-0.02	1.79	0.48	-0.14	-0.09	0.52	-0.38	-0.06
CRED	0.25	0.20	0.01	0.94^{*}	0.07	0.08	0.33	0.88^{*}
IP	$1.82^{* * *}$	$1.11^{* *}$	$3.26^{* * *}$	$1.97^{* * *}$	$2.82^{* * *}$	$3.14^{* * *}$	$2.54^{* * *}$	$1.45^{* *}$

vs. HP // 2nd column loading matrices

CRED	1.26	0.30	-0.04	0.25	-0.57	-0.13	0.00	-0.16
IP	1.51	0.11	0.43	0.02	0.34	0.86	-0.10	0.03

vs. CRED // 3nd column loading matrices

IP	-0.07	0.27	-1.99	-0.19	-0.46	2.31	1.81	0.53

The table reports the estimates of persistence ϕ_{γ} and the period p_{γ} in years ($p=2 \pi / \lambda$), respectively Significant estimates in these matrices are highlighted in grey. ${ }^{*},{ }^{* *}$ and ${ }^{* * *}$ denote statistical significance at the $10 \%, 5 \%$ and 1% level, respectively.

Properties and commonality of the medium-term cycle λ_{ψ}

Parameter estimates of multivariate UCTSM for medium-term cycle

	US	UK	JA	CA	DE	FR	IT
NL							
Properties cycles							
p_{ψ}	13.6	18.4	9.2	22.3	9.3	16.2	14.7
ϕ_{ψ}	0.99	0.99	0.99	0.99	0.99	0.99	0.99

Loading matrix B
vs. GDP // 1st column loading matrices

HP	$2.77^{* * *}$	1.19	1.45	8.43	1.80	1.54	19.58	3.56
CRED	4.48	0.80	1.73	-1.98	1.10	1.58	2.78	0.45
IP	1.91	2.42	2.70	3.17	1.69	2.66	2.32	1.71

vs. HP // 2nd column loading matrices

CRED	-0.25	0.16	0.42	1.28	6.56	-0.07	2.90	0.69
IP	-0.19	-0.36	-0.26	-0.80	-12.64	-0.17	-0.83	-0.48

vs. CRED // 3nd column loading matrices

| IP | -0.58 | -0.03 | 0.06 | 0.24 | 0.29 | -0.41 | 2.32 | 2.62 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The table reports the estimates of persistence ϕ_{ψ} and the period p_{ψ} in years ($p=2 \pi / \lambda$), respectively Significant estimates in these matrices are highlighted in grey. ${ }^{*},{ }^{* *}$ and ${ }^{* * *}$ denote statistical significance at the $10 \%, 5 \%$ and 1% level, respectively.

Conclusion

(1) We find strong evidence for the existence of a separate short-term cycle and medium-term cycle in macroeconomic and financial variables in industrialized countries
(2) We present an elegant model to simultaneously extract these cycles and estimate their co-cyclicality
(0) Co-movement between macroeconomic and financial variables limited to the medium-term
(- Strong concordance between the medium-term cycles of house prices and GDP. much less between credit and GDP

Thank you for your attention!

J.M.de.Winter@dnb.nl

Extra Slides

Details of modeling the cycles (1/2)

Remember from Calculus:

- A deterministic cycle with amplitude a and frequency λ_{ψ} can be written as:

$$
\psi_{t}=a \cos \left(\lambda_{\psi} t-b\right) \quad a, b, \lambda_{\psi}, t \in \mathbb{R} \quad a \neq 0, \lambda_{\psi} \neq 0
$$

- The first partial derivative of ψ_{t} with respect to $\lambda_{\psi} t$ equals:

$$
\psi_{t}^{*}=-a \sin \left(\lambda_{\psi} t-b\right)
$$

- The trigonometric identities:

$$
\begin{aligned}
\cos (x \pm y) & =\cos x \cos y \pm \sin x \sin y \\
\sin (x \pm y) & =\cos x \sin y \pm \sin x \cos y
\end{aligned}
$$

Details of modeling the cycles (2/2)

Using the formula's for the first partial derivative and the first trigonometric identity with $x=\lambda_{\psi} t-b$ and $y=\lambda_{\psi}$ it follows that,

$$
\begin{aligned}
& \psi_{t+1}=a \cos \left(\lambda_{\psi}(t+1)-b\right) \\
& \psi_{t+1}=a \cos \left(\lambda_{\psi} t-b+\lambda_{\psi}\right) \\
& \psi_{t+1}=a \cos \left(\lambda_{\psi} t-b\right) \cos \lambda_{\psi}-a \sin \left(\lambda_{\psi} t-b\right) \sin \lambda_{\psi} \\
& \psi_{t+1}=\psi_{t} \cos \lambda_{\psi}+\psi_{t}^{*} \sin \lambda_{\psi} \\
& \psi_{t+1}=\cos \lambda_{\psi} \psi_{t}+\sin \lambda_{\psi} \psi_{t}^{*}
\end{aligned}
$$

Or,

$$
\binom{\psi_{t+1}}{\psi_{t+1}^{*}}=\phi_{\psi}\left[\begin{array}{cc}
\cos \lambda_{\psi} & \sin \lambda_{\psi} \\
-\sin \lambda_{\psi} & \cos \lambda_{\psi}
\end{array}\right]\binom{\psi_{t}}{\psi_{t}^{*}}+\binom{\omega_{t}}{\omega_{t}^{*}},
$$

Similarly, using the formula's for the first partial derivative and the second trigonometric identity it can be shown that ψ_{t+1}^{*} can be written as:
$-\sin \lambda_{\psi} \psi_{t}+\cos \lambda_{\psi} \psi_{t}^{*}$

State Space Form

The multivariate components model equations (1) - (4) can be cast into the state space form. The measurement and transition equations are defined as:

$$
\begin{aligned}
y_{t} & =Z \alpha_{t}+\varepsilon_{t}, & & \varepsilon_{t} \sim N(0, H), \\
\alpha_{t+1} & =T \alpha_{t}+\nu_{t}, & & \nu_{t} \sim N(0, Q),
\end{aligned}
$$

where $y_{t}=\left(y_{1, t}, \ldots, y_{N, t}\right)^{\prime}, \varepsilon_{t}=\left(\varepsilon_{1, t}, \ldots, \varepsilon_{N, t}\right)^{\prime}$, and $H=\operatorname{diag}\left(\sigma_{\varepsilon_{1}}^{2}, \ldots, \sigma_{\varepsilon_{N}}^{2}\right)$. The state vector α_{t} is given by the $(6 N \times 1)$ vector

$$
\alpha_{t}=\left(\mu_{t}, \beta_{t}, \gamma_{t}, \gamma_{t}^{*}, \psi_{t}, \psi_{t}^{*}\right)^{\prime}
$$

where $\mu_{t}=\left(\mu_{1, t}, \ldots, \mu_{N, t}\right)^{\prime}$ is the long-term trend, $\beta_{t}=\left(\beta_{1, t}, \ldots, \beta_{N, t}\right)^{\prime}$ is the slope, $\left(\gamma_{t}, \gamma_{t}^{*}\right)^{\prime}=\left(\gamma_{1, t}, \ldots, \gamma_{N, t}, \gamma_{1, t}^{*}, \ldots, \gamma_{N, t}^{*}\right)^{\prime}$ is the short-term cycle, and $\left(\psi_{t}, \psi_{t}^{*}\right)^{\prime}=\left(\psi_{1, t}, \ldots, \psi_{N, t}, \psi_{1, t}^{*}, \ldots, \psi_{N, t}^{*}\right)^{\prime}$ is the medium-term cycle.

State Space Form

The measurement-transition Z matrix is given by

$$
Z=\left[\begin{array}{llllll}
I_{N} & 0_{N \times N} & A & 0_{N \times N} & B & 0_{N \times N}
\end{array}\right],
$$

with A and B are $(N \times N)$ lower triangular matrices with ones on the diagonal. The state-transition matrix T is given by

$$
T=\left[\begin{array}{cccc}
I_{N} & I_{N} & 0_{N \times 2 N} & 0_{N \times 2 N} \\
0_{N \times N} & I_{N} & 0_{N \times 2 N} & 0_{N \times 2 N} \\
0_{2 N \times N} & 0_{2 N \times N} & S & 0_{2 N \times 2 N} \\
0_{2 N \times N} & 0_{2 N \times N} & 0_{2 N \times 2 N} & L
\end{array}\right],
$$

with S and L are $(2 N \times 2 N)$ matrices defined as:

$$
S=\phi_{\gamma}\left[\begin{array}{cc}
\cos \lambda_{\gamma} I_{N} & \sin \lambda_{\gamma} I_{N} \\
-\sin \lambda_{\gamma} I_{N} & \cos \lambda_{\gamma} I_{N}
\end{array}\right], \quad L=\phi_{\psi}\left[\begin{array}{cc}
\cos \lambda_{\psi} I_{N} & \sin \lambda_{\psi} I_{N} \\
-\sin \lambda_{\psi} I_{N} & \cos \lambda_{\psi} I_{N}
\end{array}\right] .
$$

State Space Form

The state-disturbance vector ν_{t} is given by

$$
\nu_{t}=\left(0_{N \times 1}, \zeta_{t}, \kappa_{t}, \kappa_{t}^{*}, \omega_{t}, \omega_{t}^{*}\right)^{\prime},
$$

where $\zeta_{t}=\left(\zeta_{1, t}, \ldots, \zeta_{N, t}\right)^{\prime}$ are the slope-disturbances, $\left(\kappa_{t}, \kappa_{t}^{*}\right)^{\prime}=\left(\kappa_{1, t}, \ldots, \kappa_{N, t}, \kappa_{1, t}^{*}, \ldots, \kappa_{N, t}^{*},\right)^{\prime}$ are the short-term cycle disturbances, and $\left(\omega_{t}, \omega_{t}^{*}\right)^{\prime}=\left(\omega_{1, t}, \ldots, \omega_{N, t}, \omega_{1, t}^{*}, \ldots, \omega_{N, t}^{*},\right)^{\prime}$ are the medium-term cycle disturbances.

Lastly, the $(6 N \times 6 N)$ disturbance matrix Q in the transition equation is defined as:

$$
Q=\operatorname{diag}\left[\begin{array}{llll}
0_{N \times N} & \Sigma_{\zeta} & I_{2} \otimes \Sigma_{\kappa} & I_{2} \otimes \Sigma_{\omega}
\end{array}\right],
$$

where Σ_{ζ} is the variance matrix of the slope-disturbances, Σ_{κ} is the variance matrix of the short-term cycle disturbances, and Σ_{ω} is the variance matrix of the medium-term cycle disturbances. Σ_{ζ} is restricted to be diagonal, i.e.
$\Sigma_{\zeta}=\operatorname{diag}\left(\sigma_{\zeta_{1}}^{2}, \ldots, \sigma_{\zeta_{N}}^{2}\right)^{\prime}$ and the signal-to-noise ratio $\left(\sigma_{\zeta_{i}}^{2} / \sigma_{\varepsilon_{i}}^{2}\right)$ is fixed for each $i=1, \ldots, N$.

Why two cycles in one model framework

All UK series are deflated, seasonally adjusted and in natural logs.

Why two cycles in one model framework

All JA series are deflated, seasonally adjusted and in natural logs.

Why two cycles in one model framework

All CA series are deflated, seasonally adjusted and in natural logs.

Why two cycles in one model framework

All DE series are deflated, seasonally adjusted and in natural logs.

Why two cycles in one model framework

All FR series are deflated, seasonally adjusted and in natural logs.

Why two cycles in one model framework

All IT series are deflated, seasonally adjusted and in natural logs.

Why two cycles in one model framework

All NL series are deflated, seasonally adjusted and in natural logs.

Why two cycles in one model framework

Estimated spectral densities (UK data), series are in log-differences.

Why two cycles in one model framework

Estimated spectral densities (JA data), series are in log-differences.

Why two cycles in one model framework

Estimated spectral densities (CA data), series are in log-differences.

Why two cycles in one model framework

Estimated spectral densities (DE data), series are in log-differences.

Why two cycles in one model framework

Estimated spectral densities (FR data), series are in log-differences.

Why two cycles in one model framework

Estimated spectral densities (IT data), series are in log-differences.

Why two cycles in one model framework

Estimated spectral densities (NL data), series are in log-differences.

Graphical representation outcomes for the United Kingdom

Graphical representation outcomes for Japan

Estimated trend $\left(\mu_{t}\right)$, short-term cycle $\left(\gamma_{t}\right)$ and medium-term cycle $\left(\psi_{t}\right)$ for (JA data) GDP, HP, CRED and IP. Series are in logs.

Graphical representation outcomes for Canada

Graphical representation outcomes for Germany

Graphical representation outcomes for France

Graphical representation outcomes for Italy

Estimated trend $\left(\mu_{t}\right)$, short-term cycle $\left(\gamma_{t}\right)$ and medium-term cycle $\left(\psi_{t}\right)$ for (IT data) GDP, HP, CRED and IP. Series are in logs.

Graphical representation outcomes for the Netherlands

