Measuring trends and persistence in capital and labor misallocation

Jasper de Winter* & Maurice Bun*[‡]

De Nederlandsche Bank (DNB) Econometrics and Modelling Department* University of Amsterdam[‡]

17th Annual International Industrial Organization Conference, 5-7 April, 2019

Disclaimer: views expressed do not necessarily reflect official position of De Nederlandsche Bank

Research question

• What is the extent and nature of misallocation of capital and labor in the Dutch economy, and how has it evolved over time?

Motivation

• Several papers misallocation is a serious problem and has increased since the Great Rcession (Gopinath et al., 2017, Dias, 2018, Restuccia and Rogerson, 2017);

Main contribution

• Extent previous research by analyzing nature, persistence and trends of misallocation.

Main take-aways from our study

- Initial Misallocation of capital in the Netherlands has increased over the period 2001–2017;
- Initial Misallocation of labor has remained more or less stable in our sample;
- Scapital wedge is relatively large for small, highly productive firms;
- Sepital wedge is relatively small for (large) unproductive firms;
- 9 Misallocation of labor is temporary for most firms, and dies out relatively quickly;
- Misallocation of capital is more permanent, and the temporary component dies out slowly.

Data

Raw database

- Population of Dutch firms that declare corporate income tax in period 2001-2017;
- Matched with firm-level data of Dutch business registry;
- Fine grained sectoral division: NACE 5-digit,
- Number of employees (FTE/WP), size-class, balance sheet items, profit & loss account.

Analyzed database

- Repeated cross-section (highly unbalanced), restricted to non-agricultural non-financial sector;
- "Standard" cleaning (e.g. Gamberoni et al., 2016 and Gopinath et al., 2017);
- Number of observations: 1,831,575;
- Number of firms: 342,245 (+/- 110 thousand p/y)

Key equations Hsieh and Klenow (2009)

Production function: $Y_i = TFPQ_i L_i^{\alpha} K_i^{1-\alpha}$,

Profit maximization:

$$\pi_i = (1 - \boldsymbol{\tau_i^Y}) P_i Y_i - w L_i - (1 + \boldsymbol{\tau_i^K}) R K_i,$$

Profit maximizing price:

$$P_i = \frac{\sigma}{\sigma-1} M C_i,$$

Marginal costs:

$$MC_{i} = \left(\frac{RK_{i}}{\alpha}\right)^{\alpha} \left(\frac{wL_{i}}{1-\alpha}\right)^{1-\alpha} \frac{(1+\tau_{i}^{K})^{\alpha}}{TFPQ_{i}(1-\tau_{i}^{Y})}$$

Note

• "Wedges" on output (τ_i^{Y}) and capital (τ_i^{Y}) are non-standard elements.

•
$$TFPQ_i \uparrow \Rightarrow MC_i \downarrow \Rightarrow P_i \downarrow \Rightarrow Y_i \uparrow;$$

• $\tau_i^Y \mid \tau_i^K \uparrow \Rightarrow MC_i \uparrow \Rightarrow P_i \uparrow \Rightarrow Y_i \downarrow$

Misallocation measures Hsieh and Klenow (2009)

Marg. rev. product of labor:
$$MRPL_i = (1 - \alpha) \left(\frac{\sigma - 1}{\sigma}\right) \left(\frac{P_i Y_i}{L_i}\right) = \left(\frac{1}{1 - \tau_i^Y}\right) w$$
,

Marg. rev. product of capital:
$$MRPK_i = \alpha_s \left(\frac{\sigma-1}{\sigma}\right) \left(\frac{P_i Y_i}{K_i}\right) = \left(\frac{1+\tau_i^K}{1-\tau_i^Y}\right) R$$
,

Total rev. factor productivity: $TFPR_i = P_i TFPQ_i \propto (MPRL_i)^{1-\alpha} (MRPK_i) \propto \frac{(1+\tau_i^K)^{\alpha}}{1-\tau_i^Y}$

Note:

- In the absence of distortions MRPK; & MRPL; would be equated across all firms;
- If std(*MRPK*) \neq 0 | std(*MRPL*) \neq 0 \Rightarrow std(*TFPR*) \neq 0;
- Std(*MRPK*), std(*MRPL*), τ_i^K and τ_i^Y our measures of misallocation;

Effect of a change in TFPQ

- All "wedges" are zero
- firms with higher $TFPQ_i$ produce more at lower price (p'^*)
- Consequence: economy wide TFPQ is at efficient level (TFPQ_{efficient})

Effect of a wedge on capital (τ^{κ})

- τ^{K} is disturbing allocation, $TFPR'^{*} \neq TFPR^{*} \Rightarrow std(TFPR) \neq 0$
- Reason: p'^* is too high and y'^* is too low given firm's TFPQ
- Consequence: economy wide TFPQ is lower than TFPQ_{efficient}

Jasper de Winter

Outcome: standard deviation MRPK & MRPL

Increase std(*MRPK*) >> std(*MRPL*)

- std(MRPK_{industry}) < std(MRPK_{services})
- $std(MRPK_{large}) < std(MRPK_{med.}) < std(MRPK_{small}) < std(MRPK_{micro})$
- $std(MRPL_{industry}) < std(MRPL_{services})$

Outcome: TFP Loss

Total TFP Loss

• $TFPQ_{efficient} \Rightarrow std(MRPK) = std(MRPL) = std(TFPR) = 0$

More to misallocation than wedges...

Haltiwanger, Kulick, Syverson (2018), David and Venkateswaran (2019), Bils, Klenow and Ruane (2018)

Counterfactual analysis: what if only	"disturbance"	is
Heterogeneity in production function	1%	
Heterogeneous markups	25%	
Adjustment costs capital	10%	

Large part of our misallocation measure is "true" misallocation

Nature of misallocation: probability high/average/low wedge

Ordered probit τ_i^{κ} : small(decile 1:4) — average(decile 5:7) — large(decile 8:10)

Regressors: dummyset TFPQ (frontier/average/laggard), dummyset size-class (micro, small, medium, large), dummyset year (2001–2017), dummyset NACE Rev.2 (2-digit)

Jasper de Winter

Ordered probit τ_i^{κ} : small(decile 1:4) — average(decile 5:7) — large(decile 8:10)

Regressors: dummyset of TFPQ (frontier/average/laggard) \times size-class (micro, small, medium, large) \times year (2001–2017) and dummyset NACE Rev.2 (2-digit)

How persistent is misallocation?

- Exploit empirical specifications from literature on individual earnings (Ng, 2008; Guvenen, 2009, Doris et al., 2013)
- Split *MRPK/MRPL* $(y_{i,t})$ in permanent $(y_{i,t}^{P})$ and transitory $(y_{i,t}^{T})$ component.

Formula's Doris et al., 2013

Doris et al., 2013 intuition

- General Method of Moments (GMM) estimator;
- Firm-level heterogeneity in permanent component;
- Transitory component is a homogenous AR(1) process.

Permanent & transitory component MRPK and MRPL

- MRPK has become more permanent, MRPL mainly transitory;
- $std(MRPK_{industry}^{P}) < std(MRPK_{services}^{P})$
- $std(MRPK_{large}^{P}) < std(MRPK_{med.}^{P}) < std(MRPK_{small}^{P}) < std(MRPK_{micro}^{P})$

Closer look at transitory component...

$$y_{i,t} = \eta_i + \mathbf{v}_{i,t}$$
$$\mathbf{v}_{i,t} = \boldsymbol{\rho}_i \mathbf{v}_{i,t-1} + \varepsilon_{i,t}$$
$$y_{i,t} = (1 - \rho_i)\eta_i + \rho_i y_{i,t-1} + \varepsilon_{i,t}$$

$$y_{i,t} = \alpha_i + \rho_i y_{i,t-1} + \varepsilon_{i,t}$$

Note:

- Modelling ρ_i costly in terms of parameters;
- Need to restrict sample: balanced sample 2001-2017;
- OLS estimation;

Confirms outcome previous model...

• *MRPK*: $\bar{\rho}_i = 0.59$, std. = 0.27, skewness = -0.93 (left-skewed)

 $\varepsilon_{i,t}$

• *MRPL*: $\bar{\rho}_i = 0.45$, std. = 0.30, skewness = -0.06 (symmetric)

Alternative to permanent and transitory components

- Assume that some firms have a unit root in *MRPK/MRPL* while others have not (Ng, 2008);
- std.MRPK/MRPL will be increasing.

Approach:

$$V_{t,\infty} = \Lambda_{\infty} + \theta \cdot t + c,$$

$$\hat{\theta} = \frac{1}{T} \sum_{t=1}^{T} \Delta V_{t,N}$$

Note:

- $V_{t,\infty}$ = cross-sections variance of y_i , t in period t;
- Λ_{∞} = asymptotic cross-sectional average of η_i ;
- θ = fraction of firms for which $\rho_i = 1$.

Also more perstistence in the transitory component of MRPK...

- $\hat{\theta}_{MRPK} = 0.184$, statistically significant at 1% 18.4% of firms have UR;
- $\hat{\theta}_{MRPL} =$ 0.063, not statistically significant: no UR's.

Main take-aways from our study

- Initial Misallocation of capital in the Netherlands has increased over the period 2001–2017;
- Initial Misallocation of labor has remained more or less stable in our sample;
- Scapital wedge is relatively large for small, highly productive firms;
- Sepital wedge is relatively small for (large) unproductive firms;
- Misallocation of labor is temporary for most firms, and dies out relatively quickly;
- Misallocation of capital is more permanent, and the temporary component dies out slowly.