Nowcasting GDP in Real-Time with a Tone-Adjusted, Time-Varying Layered Topic Model

Jasper de Winter Dorinth van Dijk

De Nederlandsche Bank Economic Policy & Research Econometrics & Modelling Department

Seminar, Centraal Planbureau, 20 April, 2023

Views expressed are those of the authors and do not necessarily reflect the position of De Nederlandsche Bank.

Introduction

Idea

- Can we use newspaper text to track the business cycle and nowcast GDP growth?
- Extract topics from newspaper articles using unsupervised machine-learning model
- Extract sentiment using lexicon-based method;
- Combine topics and sentiment in tone-adjusted time-varying news topics

Motivation

- Understand what drives business cycle fluctuations;
- Important to have a point of departure: nowcast current pace of growth economy.

Main contributions

- Analyze unique new source of Dutch newspaper texts;
- Extend base topicmodel by including time-variation and layering in topics;
- Analyze forecasting quality of tone-adjusted time-varying news topics in nowcasting model.

Outline presentation

- Data
- Sentiment
- Model
- Nowcasting
- Concluding remarks

1. Data

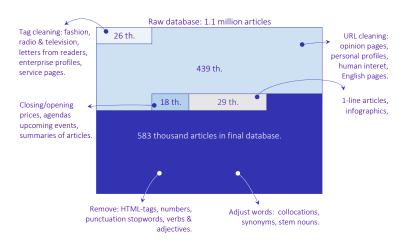
Data: Financieele Dagblad

- Complete full-text archive of Dutch "Financial Times";
- Strong focus on financial-economic news and socio-economic (politics);
- Analyzed period | 36 years | January 1st 1985—January 1st 2021;
- Clean and construct vocabulary of 2,153 words over total period 1985 2020.

September 16 2008

February 17 2020

Data: Cleanup articles & texts



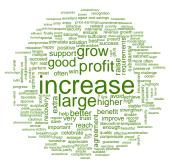
2. Sentiment

Sentiment: Extraction from newspaper articles

Sentiment Lexicon

- Customized Dutch version of Loughran and McDonald (2011)
- Check for double negations i.e.: deficit decreased, unemployment decreased
- Total list: 1,532 words | Positive: 468 | Negative: 1,063
- Sentiment score per article (see e.g. Tetlock, 2007 and Shapiro et al., 2020): (# positive words - # negative words)/(# words in article)

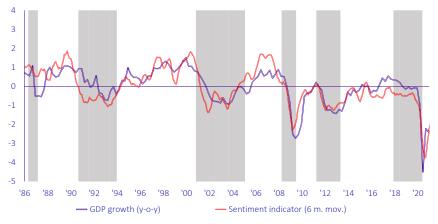
Positive words



Negative words

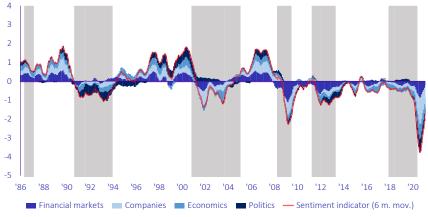
NederlandscheBa

Sentiment: newspaper sentiment and GDP growth



OECD recessions in grey

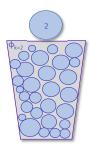
... Next part of presentation: sentiment→ per topic sentiment

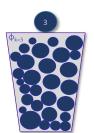


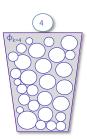
OECD recessions in grey

3. Model

Step 1: Draw prob. distribution for words over topics $(\varphi_{k=1/4})$



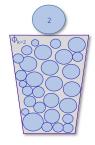


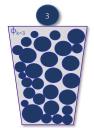


DeNederlandscheBank

 $\begin{aligned} &\textbf{Step 2:} \ Draw \ prob. \ distribution \\ &\text{for } \textbf{topics over document} \ for \ document \\ &d_1 \ (\theta_{d=1}) \end{aligned}$

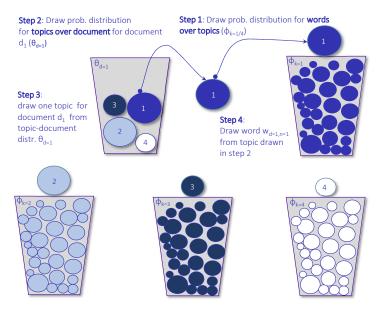
Step 1: Draw prob. distribution for words over topics $(\phi_{k=1/4})$



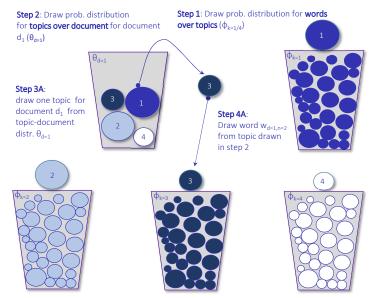


DeNederlandscheBank susossssss

Step 2: Draw prob. distribution Step 1: Draw prob. distribution for words over topics $(\phi_{k=1/4})$ for topics over document for document $d_1(\theta_{d=1})$ $\theta_{d=1}$ Step 3: draw one topic for document d₁ from topic-document distr. $\theta_{d=1}$



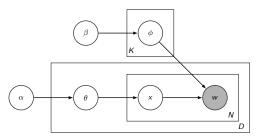
DeNederlandscheBant suitosystem



Repeat steps 3A and 4A until document d₁ is filled with N₁ words.

Model: formal description topic model

- Determine the topic-word distribution, i.e.: sample from $\phi_k \sim \text{Dirichlet}(\beta)$, where $k \in \{1, \dots, K\}$.
- Determine the document-topic distribution, i.e.: sample from $\theta_d \sim \text{Dirichlet}(\alpha)$, where $d \in \{1, ..., D\}$.
- For each word $w_{d,n}$, where $n \in \{1, \ldots, N_d\}$, and $d \in \{1, \ldots, D\}$
 - From the document-topic distribution, θ_d , sample one topic, i.e.: choose a topic $x_{d,n}$ for each word $w_{d,n} \sim \text{Multinomial}(\theta_d)$;
 - Sample a word from the topic-word distribution, ϕ_k , conditional on the topic, i.e.: choose a word $w_{d,n} \sim \text{Multinomial}(\phi_k)$,



Latent Dirichlet Allocation using plate notation

Model: Inference of model parameters

Bayesian inference of model parameters

- Derive joint distribution of the document-topic distributions θ_d the topic-word distribution ϕ_k and the allocation of words $w_{d,n}$ to topics k in all documents;
- Several methods: Expectation-Maximization (e.g. Hoffman, 2001), variational inference (e.g. Blei et al., 2003) and Gibbs sampling (Griffiths and Steyvers, 2004);
- Bayesian inference via Gibbs sampling feasible but quite costly computationally, i.e.: $Pr(\phi, \theta, x | w, \alpha, \beta)$;
- Collapsed Gibbs sampling reduces computations: $Pr(x|w,\alpha,\beta)$. Steyvers and Griffiths (2004) show that collapsed Gibbs sampler simplifies to parsimonious **counting rule**. Key to this result is the fact that Dirichlet priors are **conjugate priors** to the multinomial distribution of the likelihood function;
- Based on topic-assignments easy to derive predictive document-topic distribution $(\hat{\theta}_d)$ and topic-word distribution $(\hat{\phi}_k)$;

Essence collapsed Gibbs sampling algorithm

- Random initialization of algorithm: topic assignments of all words in the corpus from random draws of Multinomial document-topic distribution (θ_d) drawn from $Dir(\beta)$ and Multinomial topic-word distribution (ϕ_k) drawn from $Dir(\alpha)$
- First pass Gibbs sampler: Re-assigning each word to a topic on the counting rule. The rule calculates how **likely** the word is for a topic and the **dominance** of a topic in a document based on the assignment of all other words to topics, i.e.:

$$Pr(x_{i,n} = K | \mathbf{x}_{-i}, w_i, d_i, .) \propto$$
 "likeliness" \times "dominance"

Model: Extension time-variation

Time variation enables trends in topics

- 15 year time-slices of corpus of articles for $t=(1,\ldots,T)\mid$ time slice 1 spans the period Jan. 1^st 1985 until Dec. 1^st 2000 \mid time slice T spans the period Jan. 1^st 2006 until Dec. 1^st 2021;
- Intuition: use predictive document-topic distribution $(\hat{\theta}_d)$ and topic-word distribution $(\hat{\phi}_k)$ in time slice t to initialize collapsed Gibbs sampler in time slice t+1, repeat for time slice $[t+2,\ldots,T]$;
- Implementation: time-invariant vocabulary based on total sample, so words can slowly gain importance in topics by appearing in the time slice . . . remember $Pr(x_i = k | \mathbf{x}_{-i}, w_i, d_i, .) \propto$ "likeliness" \times "dominance";
- ullet Standard LDA models will underestimate trends because the model is estimated over the whole time period 1985 2020. E.g. word "Corona" has very low "likeliness" when measured over total sample but very high "likeliness" when measured in last time-slice;
- We do **not** impose word-dynamics as in dynamic topic models in e.g. Blei and Lafferty (2006) and Bitterman and Rieger (2022);

Model: Extension layering

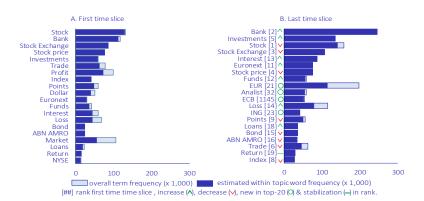
Layering enables deeper understanding topics

- Intuition: estimate new topic model in second layer for words assigned to each topic in first layer. E.g. 4 topics in first layer. Estimate four new topic models for words assigned to each of these 4 topics;
- Implementation: We construct three layers with four topics for ex-positional purposes;
- Use random initialization in first time slice and posterior distribution from previous time slice in subsequent periods;
- We impose hierarchy. Different from hierarchical topic models where hierarchy is based on correlations (Griffiths et al., 2003).

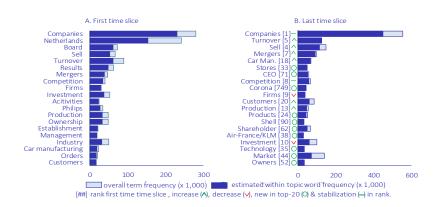
Model: outcome Time Varying Layered (TVL) LDA model, layer 1 - layer 3

Layer 1	Financial Markets	Firms	Economics	Politics
Layer 2	Markets	Infrastructure	Elections	Parliament
	1. Raw materials	17. Chemical & Pharma	33. Elections	49. Politics
Layer3	2. Exchanges	18. Indices	34. Easten Europe	50. Budgetary policy
Layers	3. International	19. Mobility	35. Africa & Asia	51. Cabinets
	4. Monetary Policy	20. Company Results	36. United States	52. Ministries
Layer 2	Financials	Multinationals	Indicators	National
	5. Corporate Finance	21. Telecom	37. International	53. Justice
Layer3	6. Financials	22. Customers	38. Europe	54. Pensions & Healthcare
Layers	7. Banks	23. Big Tech	39. Trading Partners	55. Supervision
	8. Insurance	24. Media	40. Fiscal Policy	56. Education & Research
Layer 2	News	Construction & Energy	Raw Materials	Lower Government
	9. Emissions	25. Construction	41. Asia	57. Housing
Layer3	10. Takeovers	26. Logistics	42. Oil & gas	58. Public-private
Layers	11. Trade	27. Energy	43. Conflicts	59. Agriculture & Fishery
	12. Insurers	28. Industry	44. Emerging Markets	60. Transport
Layer 2	Fin. Indices	Demography	European Union	Social Partners
	13. Stock Markets	29. Retail	45. Germany	61. Wage Negotiations
Layer3	14. Euronext	30. Bankruptcies	46. European Union	62. Labor Market
Layers	15. Analists	31. Listed	47. Italy & Spain	63. Entrepeneurs
	16. Results	32. International	48. France	64. Social Security & Pensions

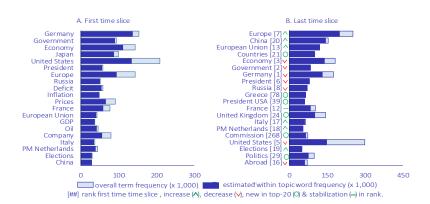
Model: outcome layer 1: "Financial Markets"



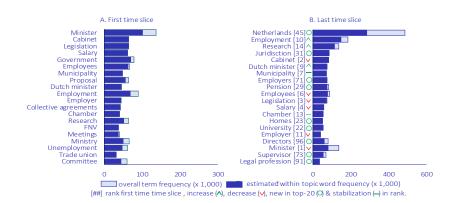
Model: outcome layer 1: "Firms"



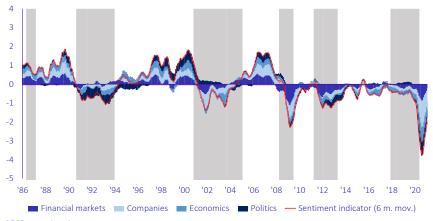
Model: outcome layer 1: "Economics"



Model: outcome layer 1: "Politics"



Model: newspaper sentiment per topic



OECD recessions in grey

4. Nowcasting

Nocasting horse-race: benchmark model

- Pseudo real-time exercise: using short-term forecasts of dynamic factor model with and without textual data to see if newspaper sentiment adds to forecast accuracy;
- **Intuition** dynamic factor model: summarize information in large set of indicators ("curse of dimensionality") in few factors with dynamics in factors (VAR). Use factors to forecast GDP;
- Estimate model-coefficients dynamic factor model with quasi maximum-likelihood taking into account differences in frequencies (GDP: quarterly, indicators: monthly) and publication delays (see e.g. Hindrayanto, de Winter and Koopman, 2016);
- **Estimation**: start 1996M1 | Evaluation: 2003Q1–2020Q3 | 70 monthly indicators | (max) 64 newspaper sentiment indicators.

Nocasting horse-race: design

- GDP released with 45-day lag | first release Dutch GDP growth first quarter 2023 will be released on May 15th;
- We analyze forecast quality for 8 different forecasting horizons;

Example: Naming GDP forecasts first quarter 2023

		0	
Nr.	Forecast type	Month	Forecast made on the 1^{st} of
1	Forecast	M1	October
2		M2	November
3		M3	December
4	Nowcast	M1	January
5		M2	February
6		M3	March
7	Backcast	M1	April
8		M2	May

Total sample

- **Economic** significance (relative RMSFE \leq 0.95), **Statistical** significance (DM-test);
- TVL-LDA increases the forecasting accuracy of the dynamic factor model;
- Particularly when it pertains to current or previous quarter;
- ullet Parsimonious configuration topic model more accurate (4 imes 4).

0.95 < RMSFE < 1.05

		DFM	DFM with tone-adjusted topics		
topicmodel type		-	TVL-LDA	TVL-LDA	TV-LDA
# topics per layer (X)		-	4 X 4 X 4	4 X 4	4
		(absolute RMSFE)	(relative RMSFE against DFM)		
Backcast	M2	0.78	0.98	0.86 *	0.94
	M1	0.95	1.11	0.95 *	0.99
Nowcast	МЗ	1.31	1.03	0.93 *	0.98 *
	M2	1.47	1.05	1.00	0.99 *
	M1	1.71	1.04	1.01	1.00 **
Forecast	МЗ	1.73	1.01	1.00 *	1.00 *
	M2	1.65	1.00	1.00	1.00
	M1	1.58	1.01	1.00	1.00

. DeNederlandscheBank

RMSFE ≥ 1.05

RMSFE ≤ 0.95 * DM-test significance

Excluding crises quarters (2009Q1, 2020Q2 and 2020Q3)

- Some advantage but either **not** statistically or economically significant;
- Value added LDA mainly attributable to crisis, when its critical;

		DFM	DFM with tone-adjusted topics		
topicmodel type		-	TVL-LDA	TVL-LDA	TV-LDA
# topics per layer (X)		-	4 X 4 X 4	4 X 4	4
		(absolute RMSFE)	(relative RMSFE against DFM)		
Backcast	M2	0.53	0.93	1.01 *	0.98
	M1	0.54	0.94	1.00 *	0.99
Nowcast	МЗ	0.55	0.96	1.00 *	0.99 *
	M2	0.56	0.97	1.00	0.99 *
	M1	0.57	1.00	0.99	0.99 **
Forecast	МЗ	0.57	1.01	0.97 *	1.00 *
	M2	0.59	1.04	0.99	1.00
	M1	0.59	1.08	0.97	1.00

RMSFE: Root Mean Squared Forecast Error, 2003Q3-2020Q3, excluding 2009Q1, 2020Q2 and 2020Q3.

RMSFE ≥ 1.05 0.95 < RMSFE < 1.05 RMSFE ≤ 0.95 * DM-test significance

Excluding crises (2009Q1, 2020Q2 and 2020Q3)

- LDA with 16 topics in different configurations;
- No clear advantage besides nowcasts of TVL-LDA, but not statistically significant;

DFM with tone-adjusted topics					
topicmodel type		LDA	TVL-LDA	TV-LDA	L-LDA
# topics per layer (X)		16	4 X 4	16	4 X 4
		(absolute RMSFE)	(relative RMSFE against LDA)		
Backcast	M2	0.66	1.02	1.00	1.03
	M1	0.91	0.98	0.99	1.02
Nowcast	M3	1.31	0.93	0.97	0.96
	M2	1.55	0.94	0.98	0.97
	M1	1.80	0.96	0.98	0.97
Forecast	M3	1.72	1.00	1.00	1.00
	M2	1.65	1.00	1.00	1.00
	M1	1.59	1.00	1.00	1.00
RMSFE: Root Mean Squa	red Fore	cast Error, 2003Q3-20200	Q3.		
RMSFE ≥ 1.05 0.95 < RMSFE < 1.05 RMSFE ≤ 0.95 * DM-test significance				ificance	

Concluding remarks

Five main takeaways from our research

- Newspaper sentiment is a conincident indicator of the business cycle;
- Tone-adjusted time varying layered topics add "story-telling" layer to newspaper sentiment;
- Tone-adjusted time varying layered topics embody information not captured in other monthly indicators, especially during periods of high volatility;
- Evidence (at best) mixed on increase in nowcasting accuracy for layering and timevariation in topic tone-adjusted topic model;
- For nowcasting purposes use a parsimonious topic model;

Thank you for your attention!

J.M.de.Winter@dnb.nl

Algorithm LDA collapsed Gibss sampler

Draws from the posterior distribution Pr(x|w) are obtained by sampling from

$$Pr(x_{i} = K | \mathbf{x}_{-i}, w_{i}, d_{i}, .) \propto \underbrace{\frac{n_{-i,K}^{(j)} + \beta}{n_{-i,K}^{(i)} + V \beta}}_{\text{"likeliness"}} \times \underbrace{\frac{n_{-i,K}^{(d_{i})} + \alpha}{n_{-i,L}^{(d_{i})} + k \alpha}}_{\text{"dominance"}}$$

- V number of words in the vocabulary;
- indicates w_i is equal to the jth term in the vocabulary, $j = [1 \dots, V]$;
- $(j) \atop n_{-i,K}^{(j)}$ freq. of the *i*th term assignment to topic K without the *i*th word;
- document in the corpus to which word w_i belongs:
- vector of current topic membership of all words without the *i*th word w_i ; X_{-i}
- (.) summation over index;
- prior of the Dirichlet distribution of the topic-word distribution (ϕ_k) ; α
- prior of the Dirichlet distribution of the document-topic distribution (θ_d).

One draw for all words in the corpus equals one iteration of the Gibbs sampler. Based on topic-assignments you can calculate estimated predictive document-topic distribution $(\hat{\theta}_d)$ and topic-word distribution $(\hat{\phi}_k)$.

