# Informational content of newspaper articles for business cycle analysis

Jasper de Winter\* & Maurice Bun\*† & Dorinth van Dijk\*‡

De Nederlandsche Bank (DNB)\* University of Amsterdam<sup>†</sup> Massachusetts Institute of Technology<sup>‡</sup>

Joint Research Centre European Commission, Ispra (IT), 20 June, 2019

Disclaimer: views expressed do not necessarily reflect official position of De Nederlandsche Bank



### Introduction

#### Research question

 Can we use text data to nowcast GDP growth and predict turning points in the Dutch economy?

#### Motivation

- New source of information besides "hard" data and forecasts of analists;
- Several recent papers seem to be quite successful in forecasting economic variables using textual data

#### Main contributions

- Comparison of forecasting accuracy of pre-defined lexicon method versus unsupervised machine learning methods on novel database of large Dutch financial newspaper;
- Analyze effectiveness of machine learning methods to filter relevant newspaper articles;
- Analyze interrelatedness of news topics.



# **Outline presentation**

### What have we learned, where are we going?

- Nowcasting: forecasting q-o-q growth of Gross Domestic Product (GDP) for nearby quarters;
- Three recent De Nederlandsche Bank (DNB) papers on selection of nowcasting model and comparison to professional forecasters, i.e.:
  - Best of popular linear nowcasting models (part 1 presentation)
     Jansen, Jin en de Winter, 2016, International Journal of Forecasting
  - Nowcasting models in comparison with forecasts of professional analysts (part 1 presentation)
    - Jansen en de Winter, 2018, Oxford Bulletin of Economics and Statistics
  - Best specification of (dynamic) factor model for nowcasting Hindrayanto, Koopman, de Winter, 2016, International Journal of Forecasting
- Follow up: compare nowcasting models with new big-data sources: news-articles from financial newspaper. Preliminary results (part 2 presentation)



#### Part 1: Data sources

#### Data used

- Monthly indicators
  - Real-time vintages for approx. 40 headline "market moving" indicators that are readily available to economic agents (e.g. Bańbura et al., 2013, Bańbura and Modugno, 2014);
  - Data on global economy (i.e. commodity prices, semiconductor sales, Baltic Dry index), domestic economy (i.e. industrial production, consumer confidence, key indicators trading partners (i.e. import, exports);
- Quarterly Gross Domestic Product
  - Real-time vintages for GDP;
- Quarterly Forecast Professional Analysts
  - New data set constructed of paper copies of quarterly forecasts for G7-countries from Consensus Forecasts;
- Daily newspaper articles
  - Exclusive access to digitalized datbase containing all articles in (only) financial newspaper in the Netherlands (Financieele Dagblad) over the period 1985–2018;



# Part 1: Challenge of nowcasting

### Forecasting GDP growth in the short term: three challenges

- Large size of the monthly information set ('curse of dimensionality');
- Indicators are observed at different frequencies
  - Daily: newspaper articles, financial markets;
  - Monthly: consumer confidence, industrial production;
  - Quarterly: gross domestic product & forecasts of professional analysts;
- Dating of most recent observations varies per variable ('ragged edges');
  - Consumer confidence up until May 2019, flash June 2019;
  - Industrial production up until April 2019;
  - Consensus forecasts made at the beginning of June;
  - Newspaper articles up until June 20th.



### Forecast, month 3 for 2019Q2

industrial production retail sales stock price index imports economic sentiment indicator unemployment world trade M1

|     | 2018    |     |     |            |     |     | 2019      |     |     |     |     |
|-----|---------|-----|-----|------------|-----|-----|-----------|-----|-----|-----|-----|
|     | Q4      |     |     | Q1         |     |     | Q2        |     |     | Q3  |     |
| oct | nov     | dec | jan | feb        |     | apr | may       | jun | jul | aug | sep |
|     |         |     |     |            |     |     |           |     |     |     |     |
|     |         |     |     |            |     |     |           |     |     |     |     |
|     |         |     | ,   |            |     |     |           |     |     |     |     |
|     |         |     |     |            |     |     |           |     |     |     |     |
|     |         |     | •   |            |     |     |           |     |     |     |     |
|     |         |     |     |            |     |     |           |     |     |     |     |
|     |         |     |     |            |     |     |           |     |     |     |     |
|     |         |     |     |            |     |     |           |     |     |     |     |
|     |         |     |     |            |     |     |           |     |     |     |     |
| - 0 | DP know | 'n  |     |            |     | ne  | ew foreca | st  |     |     |     |
|     | known   |     | kn  | own till n | nar |     |           |     |     |     |     |



### Nowcast, month 1 for 2019Q2

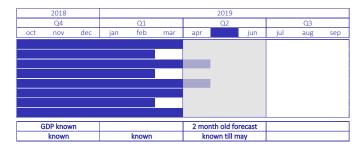
industrial production retail sales stock price index imports economic sentiment indicator unemployment world trade M1

|       | 2018    |     |     | 2019  |     |    |            |     |     |     |     |  |  |  |
|-------|---------|-----|-----|-------|-----|----|------------|-----|-----|-----|-----|--|--|--|
|       | Q4      |     |     | Q1    |     |    | Q2         |     |     | Q3  |     |  |  |  |
| oct   | nov     | dec | jan | feb   | mar |    | may        | jun | jul | aug | sep |  |  |  |
|       |         |     |     |       |     |    |            |     |     |     |     |  |  |  |
|       |         |     |     |       |     |    |            |     |     |     |     |  |  |  |
|       |         |     |     |       |     |    |            |     |     |     |     |  |  |  |
|       |         |     |     |       |     |    |            |     |     |     |     |  |  |  |
|       |         |     |     |       |     |    |            |     |     |     |     |  |  |  |
|       |         |     |     |       |     |    |            |     |     |     |     |  |  |  |
|       |         |     |     |       |     |    |            |     |     |     |     |  |  |  |
|       |         |     |     |       |     |    |            |     |     |     |     |  |  |  |
|       | DP know |     |     |       |     | 1  | th old fo  |     |     |     |     |  |  |  |
|       |         | п   |     |       |     |    |            |     |     |     |     |  |  |  |
| known |         |     |     | known |     | kn | own till a | ıpr |     |     |     |  |  |  |



### Nowcast, month 2 for 2019Q2

industrial production retail sales stock price index imports economic sentiment indicator unemployment world trade M1





#### Nowcast, month 3 for 2019Q2

industrial production retail sales stock price index imports economic sentiment indicator unemployment world trade M1

|       | 2018      |     |     | 2019  |     |                |          |     |     |     |     |  |  |
|-------|-----------|-----|-----|-------|-----|----------------|----------|-----|-----|-----|-----|--|--|
|       | Q4        |     |     | Q1    |     |                | Q2       |     |     | Q3  |     |  |  |
| oct   | nov       | dec | jan | feb   | mar | apr            | may      |     | jul | aug | sep |  |  |
|       |           |     |     |       |     |                |          |     |     |     |     |  |  |
|       |           |     |     |       |     |                |          |     |     |     |     |  |  |
|       |           |     |     |       |     |                |          |     |     |     |     |  |  |
|       |           |     |     |       |     |                |          |     |     |     |     |  |  |
|       |           |     |     |       |     |                |          |     |     |     |     |  |  |
|       |           |     |     |       |     |                |          |     |     |     |     |  |  |
|       |           |     |     |       |     |                |          |     |     |     |     |  |  |
|       |           |     |     |       |     |                |          |     |     |     |     |  |  |
| GE    | GDP known |     |     |       |     | ne             | ew forec | ast |     |     |     |  |  |
| known |           |     |     | known |     | known till jun |          |     |     |     |     |  |  |



#### Backcast, month 1 for 2019Q2

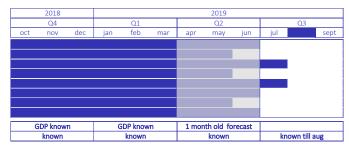
industrial production retail sales stock price index imports economic sentiment indicator unemployment world trade M1

|     | 2018    |     |           |       |     |                      | 2019 |     |    |             |     |
|-----|---------|-----|-----------|-------|-----|----------------------|------|-----|----|-------------|-----|
|     | Q4      |     |           | Q1    |     |                      | Q2   |     |    | Q3          |     |
| oct | nov     | dec | jan       | feb   | mar | apr                  | may  | jun |    | aug         | sep |
|     |         |     |           |       |     |                      |      |     |    |             |     |
|     |         |     |           |       |     |                      |      |     |    |             |     |
|     |         |     |           |       |     |                      |      |     |    |             |     |
|     |         |     |           |       |     |                      |      |     |    |             |     |
|     |         |     |           |       |     |                      |      |     |    |             |     |
|     |         |     |           |       |     |                      |      |     |    |             |     |
|     |         |     |           |       |     |                      |      |     |    |             |     |
|     |         |     |           |       |     |                      |      |     |    |             |     |
| 0   | DP know | n   | GDP known |       |     | 1 month old forecast |      |     |    |             |     |
|     | known   |     |           | known |     | known                |      |     | kı | nown till j | ul  |



#### Backcast, month 2 for 2019Q2

industrial production retail sales stock price index imports economic sentiment indicator unemployment world trade M1





#### Backcast, month 3 for 2019Q2

industrial production retail sales stock price index imports economic sentiment indicator unemployment world trade M1

|     | 2018    |     |       |         |       |     | 2019    |                |     |     |
|-----|---------|-----|-------|---------|-------|-----|---------|----------------|-----|-----|
|     | Q4      |     |       | Q1      |       |     | Q2      |                |     | Q3  |
| oct | nov     | dec | jan   | feb     | mar   | apr | may     | jun            | jul | aug |
|     |         |     |       |         |       |     |         |                |     |     |
|     |         |     |       |         |       |     |         |                |     |     |
|     |         |     |       |         |       |     |         |                |     |     |
|     |         |     |       |         |       |     |         |                |     |     |
|     |         |     |       |         |       |     |         |                |     |     |
|     |         |     |       |         |       |     |         |                |     |     |
|     |         |     |       |         |       |     |         |                |     |     |
|     |         |     |       |         |       |     |         |                |     |     |
| G   | DP know | n   | G     | DP know | /n    | G   | DP know | n              |     |     |
|     | known   |     | known |         | known |     |         | known till sep |     |     |



### Summing up: timing of forecasts for GDP growth 2019Q2

| Forecast type |   | Month  |
|---------------|---|--------|
| Forecast      | 3 | March  |
| Nowcast       | 1 | April  |
|               | 2 | May    |
|               | 3 | June   |
| Backcast      | 1 | July   |
|               | 2 | August |
|               |   |        |



### Best nowcasting model

Horse race between suit of currently popular linear nowcasting models over the period 1996–2011, for the EA and it's five largest countries

#### Pseudo real-time analysis

- Models re-estimated each month taking into account flow of information;
- Root Mean Squared Forecast Error is measure of forecast accuracy;

#### **Econometric models**

 Quarterly model for GDP growth: aggregate all indicators to quarterly level and then estimate model;

```
Bridge Equations: BEQ (Baffigi et al., 2004, Kitchen and Monaco, 2003)
Quarterly Vector Autoregressive Model: QVAR (Camba-Mendez et al, 2001)
Bayesian Vector Autoregressive Model: BVAR (Bańbura et al, 2010)
```

 Mixed-Frequency models: mix daily, monthly and quarterly information the estimated model;

```
Dynamic Factor model: DFM (Bańbura and Rünstler, 2011)
Mixed-Frequency Vector Autoregressive Model: MF-VAR (Kuzin et al., 2011)
Mixed-Data Sampling Regression Model: MIDAS (Ghysels et al., 2007)
```



### Main takeaways model forecasting horse-race

(Jansen, Jin, Winter de, 2016)

 Useful to use monthly indicators, especially for nowcasting and backcasting & during volatile times;



#### Main takeaways model forecasting horse-race

- Useful to use monthly indicators, especially for nowcasting and backcasting & during volatile times;
- Extracting factors is a better strategy than averaging single-indicator models (aggregating versus pooling);



#### Main takeaways model forecasting horse-race

- Useful to use monthly indicators, especially for nowcasting and backcasting & during volatile times;
- Extracting factors is a better strategy than averaging single-indicator models (aggregating versus pooling);
- Adding autoregressive terms to models does not matter much in terms of forecasting accuracy;



#### Main takeaways model forecasting horse-race

- Useful to use monthly indicators, especially for nowcasting and backcasting & during volatile times;
- Extracting factors is a better strategy than averaging single-indicator models (aggregating versus pooling);
- Adding auto-regressive terms to models does not matter much in terms of forecasting accuracy;
- Dynamic factor model is best model overall dues to it's ability to incorporate multiple factors;



#### Main takeaways model forecasting horse-race

- Useful to use monthly indicators, especially for nowcasting and backcasting & during volatile times;
- Extracting factors is a better strategy than averaging single-indicator models (aggregating versus pooling);
- Adding auto-regressive terms to models does not matter much in terms of forecasting accuracy;
- Dynamic factor model is best model overall dues to it's ability to incorporate multiple factors;
- The cost of applying a sub-optimal model is highest during volatile times (e.g financial crisis);



#### Main takeaways model forecasting horse-race

- Useful to use monthly indicators, especially for nowcasting and backcasting & during volatile times;
- Extracting factors is a better strategy than averaging single-indicator models (aggregating versus pooling);
- Adding auto-regressive terms to models does not matter much in terms of forecasting accuracy;
- Dynamic factor model is best model overall dues to it's ability to incorporate multiple factors;
- The cost of applying a sub-optimal model is highest during volatile times (e.g financial crisis);
- The information content of different model types overlaps to a large extent: averaging is not very helpful.



#### "Men versus machine"

Horse race between best nowcasting model (dynamic factor model) and professional analysts over the period 1999–2013, for the G-7 countries

#### Real-time analysis

- Models re-estimated each month taking into account flow of information and datarevisions;
- Root Mean Squared Forecast Error is measure of forecast accuracy;

#### **Graphical presentation outcomes**

- Averages for G-7 countries, measures of differences between countries;
- Equality of forecasting performance in "economic" and "statistical" terms: 10% rule and Diebold Mariano (1995) test.
- Forecast accuracy against the flash GDP release;

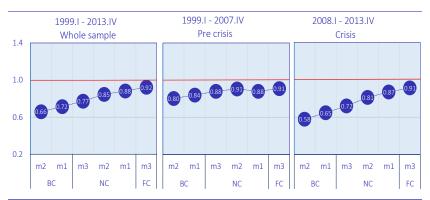


# Remember: timing of forecasts for GDP growth 2019Q2

| Forecast type |   | Month  |       |
|---------------|---|--------|-------|
| Forecast      | 3 | March  | FC M3 |
| Nowcast       | 1 | April  | NC M1 |
|               | 2 | May    | NC M2 |
|               | 3 | June   | NC M3 |
| Backcast      | 1 | July   | BC M1 |
|               | 2 | August | BC M2 |



### Dynamic factor model vs. Random Walk



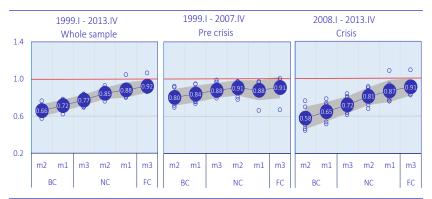
Source: DNB.

Note: RMSFE Dynamic Factor Model divided by RMSFE Random Walk; average G-7; BC = Backcast, NC=Nowcast, FC=Forecast.

- 1 Incorporating monthly information pays off (all rRMSFES < 1);
- rRMSFE post-crisis << pre-crisis;</pre>
- OFM's relatively strength is now- and backcasting.



### Dynamic factor model vs. Random Walk



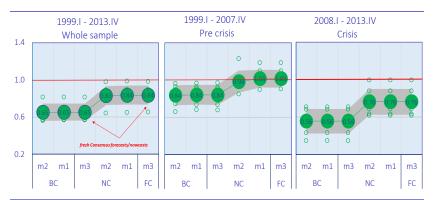
Source: DNB.

Note: RMSFE Dynamic Factor Model divided by RMSFE Random Walk; BC = Backcast, NC=Nowcast, FC=Forecast.

- Country variability (grey area): +/- 1 standard deviation; dots are G7-countries
- All countries relatively close together;



#### Consensus Forecasts vs. Random Walk



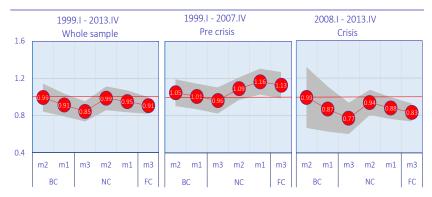
Source: DNB.

Note: RMSFE Quarterly Consensus Forecasts divided by RMSFE Random Walk; BC = Backcast, NC=Nowcast, FC=Forecast.

- Very steep learning curves
- Relative forecasting advantage N3>>F3



### Consensus Forecasts vs. Dynamic Factor Model



Source: DNB.

Note: RMSFE Quarterly Consensus Forecasts divided by Dynamic Factor Model; BC = Backcast, NC=Nowcast, FC=Forecast.

- lacktriangle Fresh CF nowcasts always better than DFM ightarrow driven by crisis;
- lacktriangle DFM catches up in between fresh CF's ightarrow especially during crisis;



#### What have we learned?

- Predictive power subjective Consensus forecasts has improved relative to predictions from the dynamic factor model over time;
- Consensus forecasts improve after the crisis, making them a tough competitor to the DFM;
- Relative forecasting CF current quarter (some information);

#### Combination of DFM and professional forecasters

- Enhances forecasting accuracy of the DFM, even when CF are somewhat dated;
- Analysts "bring something new to the table";

#### Follow up: what about the informational content of news articles?

- Professional forecasters seem to give "different" information
- How about news media/journalists? → Part 2



# Part 2: (Some) Recent papers using news media

#### Lexicon method

- Forecast change in financial markets (Tetlock, 2007; Garcia, 2013);
- Create sentiment score for a press article based on (weighted) frequency count of pre-defined dictionary with "positive" and "negative" keywords;
- Either generic (Harvard IV dictionary as in e.g. Thorsrud, 2016) or specific for the study area (Loughran & McDonald's financial dictionary, 2011 and Baker et al. sentiment uncertainty dictionary, 2016)



# Part 2: (Some) Recent papers using news media

#### Lexicon method

- Forecast change in financial markets (Tetlocjk, 2007; Garcia, 2013);
- Create sentiment score for a press article based on (weighted) frequency count of pre-defined dictionary with "positive" and "negative" keywords;
- Either generic (Harvard IV dictionary as in e.g. Thorsrud, 2016) or specific for the study area (Loughran & McDonald's financial dictionary, 2011 and Baker et al. sentiment uncertainty dictionary, 2016)

### Unsupervised machine learning methods

- Change in frequency of subjects detected with Latent Dirichlet Allocation (LDA)
- Test if topics have predictive power for GDP and other macro-economic variables (Larsen & Thorsrud, JoE, 2019);



# Part 2: (Some) Recent papers using news media

#### Lexicon method

- Forecast change in financial markets (Tetlocjk, 2007; Garcia, 2013);
- Create sentiment score for a press article based on (weighted) frequency count of pre-defined dictionary with "positive" and "negative" keywords;
- Either generic (Harvard IV dictionary as in e.g. Thorsrud, 2016) or specific for the study area (Loughran & McDonald's financial dictionary, 2011 and Baker et al. sentiment uncertainty dictionary, 2016)

#### Unsupervised machine learning methods

- Change in frequency of subjects detected with Latent Dirichlet Allocation (LDA)
- Test if topics have predictive power for GDP and other macro-economic variables (Larsen & Thorsrud, JoE, 2019);

### Combination unsupervised machine learning and lexicon method

- LDA with pre-defined sentiment list to get tone-adjusted topic → extract factors →
   estimate dynamic factor model (Thorsrud, 2016a en 2016b) and compare to mechanical nowcasts and nowcasts of central bank;
- LDA with pre-defined sentiment list to get tone-adjusted topic  $\rightarrow$  panel data regression of topics on assets returns (Thorsrud, 2016c)

# Part 2: Can textual data be helpful for nowcasting?

### Our paper

 Joined topic-sentiment index of newspaper-articles & analyze if it improves forecasts accuracy of mechanical models & professional analysts;

#### Main contributions to the literature

- Comparison of forecasting accuracy of pre-defined lexicon method versus unsupervised machine learning methods on novel database of large Dutch financial newspaper;
- Analyze effectiveness of machine learning methods to filter relevant newspaper articles;
- Analyze interrelatedness of news topics.



# Part 2: Can textual data be helpful for nowcasting?

#### Financieele Dagblad



- Largest and only daily financial newspaper in the Netherlands;
- ullet  $\pm$  100,000 subscriptions; mostly firms, government and universities
- Pilot project with Financieele Dagblad: exclusive to De Nederlandsche Bank;



# Part 2: Can textual data be helpful for nowcasting?

#### Raw database

- All articles in Financieele Dagblad in the period January 1st 1985 December 31st 2018;
- $\bullet$   $\pm$  1 million articles;

# Restrict database: keep only the articles relevant for forecasting business cycle/GDP growth

- Remove information based on pre-defined newspaper categories ,i.e. fd-private, personal finance, selections, weekend specials, background pieces, reader's letters, photo pages etc.
- All in all 350 categories removed;

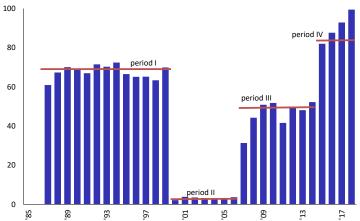
#### Restrict database: remove and transform words

- Transform to lowercase letter, remove HTML-tags, punctuation and numbers;
- Spell check not necessary (fully digitized, no OCR);



# Part 2: First look at the newspaper database

### First look at the data: topic tags in Fd database



- 3,255 hand tagged topics; not all articles tagged;
- << 5% of articles tagged in period '00-'06;</li>
- Re-tag with simple rule: occurence of tag in article;
- Topics = 3 tags with highest frequency;



# Part 2: First look at the newspaper database

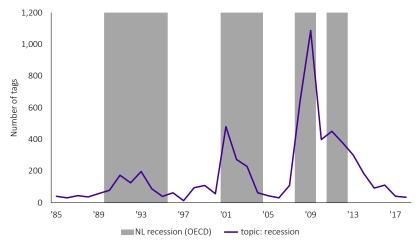
### Topic tags in Fd database after re-tagging

```
wall street consument
         dsm schiphol onderwijs
      ecb reutersverenigde_staten
    pensioen dollar overheid toezicht
      belasting onderneming politie
 akkoord kabinet amponderzoek
              olie 📆
                                    politiek
badienst
financiële amsterdam<sub>landen</sub>
    frankrijk industrie china klm vvd
       aandeelhouders
          abn amro unilever water
                vastgoed
```



# Part 2: First look at the newspaper database

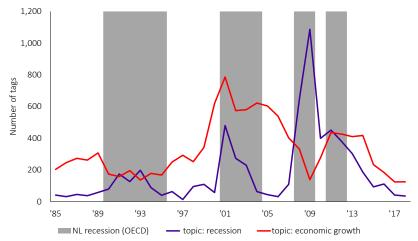
### Count of the topic recession





# Part 2: First look at the newspaper database

### Counts of the topic recession and economic growth





#### Lexicon based sentiment scoring

- Sentiment score per article: freq. count of pre-defined dictionary with "positive" and "negative" keywords;
- Daily/Monthly/Quarterly score: average daily/monthly/quarterly article score.

#### No standard Lexicon based sentiment list for the Netherlands: create one ...

- Translated Loughran & McDonald (2011) list (Google Translate, DeepL)  $\rightarrow$  **1,672** words;
- Take polarity scores (between -1 and 1) from VU University developed generic list  $\rightarrow$  4,634 words;
- Manually check for overlap and delete non-domain specific terms and contradictions
   → 5,632 words.

#### Before scoring clean some more

- Stem verbs: Pattern package  $\rightarrow$  **20,061 verbs** and their stem;
- Stem words: R Hunspell package for Dutch;
- $\bullet \ \ \text{Remove stopwords: List from several packages} + \text{manually added words} \rightarrow \textbf{500 words}. \\$



### Lexicon sentiment index: frequency terms

```
zorgen volgen
                         afgelopen financieele
                                           alleen
financiële 5
```



Lexicon sentiment index: frequency positive terms

```
ontwikkelingen
                         mogelijkheden
         verbetering natuurlijk fo
       openbaar
          voldoen ♥₽ juist
  gewoon
       behalenextra
     positief leider
   volledigsterk direct
toename
                                     net
                                                 raken
wissen
        menenhoog goede
                                             precies
                   echtondanks hard
     mogelijkheid
                              ontvangen
             zwaar
                    versterken lezen
               beschikbaar terecht
                aanzienlijk
```

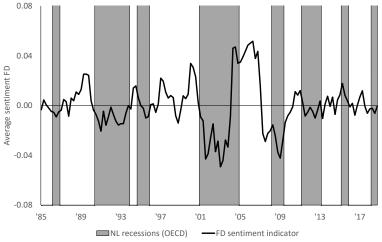


### Lexicon sentiment index: frequency negative terms

verbieden tegenvallende verlatenrespectievelijk schrappen schulden minimaal gebrek o min strijden werkloosheid verhalen 5 stuk risico duren belasting 9daling ongeveer beneden moeilijk laat m aanpassen slecht vallen verstrekken tekort duurder niets beperken afhankelijk boeteuitstellen tijdelijk voorspellen weigeren conflict bezuiniainaen

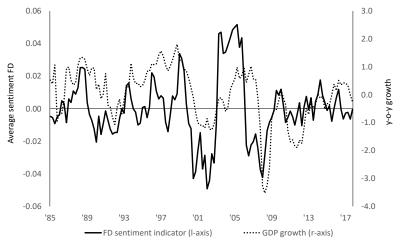
DeNederlandscheBank

### Lexicon sentiment indicator FD & NL recessions





#### Lexicon sentiment indicator FD & NL GDP





# Part 2: Give meaning to sentiment scores using pre-defined topics

#### Hierarchical trend model

- Sentiment index is estimated using a Hierarchical Trend Model (HTM), taken from housing market research (Francke and Vos, 2004)
- Idea: housing market prices are sum of country + region + municipality effects (hierarchy).
- First test: total sentiment is modeled as local level model and NL,DE,FR, UK and US are modeled as a random walk:

$$y_t = \mathbf{i}\mu_t + D_t \kappa_t + \varepsilon_t, \varepsilon_t \sim N(0, \sigma_\varepsilon^2 \mathbf{I})$$
 (1)

$$\mu_{t+1} = \mu_t + \eta_t, \eta_t \sim N(0, \sigma_\eta^2 \mathbf{I})$$
 (2)

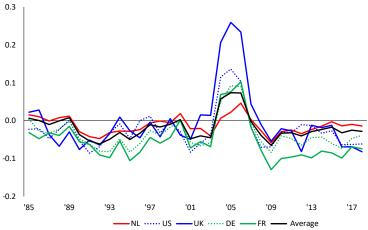
$$\kappa_{t+1} = \kappa_t + \zeta_t, \zeta_t \sim N(0, \sigma_{\zeta}^2 \mathbf{I})$$
(3)

Sentiment of article i is a function of newspaper trend  $\mu_t$  and topic-trend  $\kappa$ .



# Part 2: Give meaning to sentiment scores using pre-defined topics

#### Lexicon sentiment indicator FD in a Hierarchical Trend Model



#### Possible extensions ...

- Regions (North America, Asia, Europe) & countries;
- Different weights for countries or regions;
- Seperate trend and cycle.



# Machine-learning alternatives

#### Alternative to Lexicon method

- Naïve Bayes Classifier: "spam" filter (Kotsiantsis et al., 2006)
- Naïve Bayes Classifier: positive/negative sentiment
- Idea: Frequency of words in "spam" / "non-spam", "positive/negative", e.g. apearance
  of employment and GDP will increase probability of belonging to relevant article.

#### Alternative to using pre-defined categories

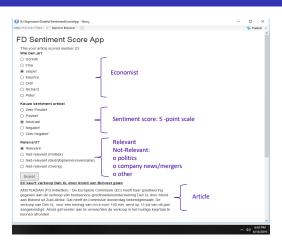
- Latent Dirichlet Allocation topic model (Hansen et al., 2018, Thorsrud, 2019)
- Idea: each article is distribution of topics, and each topics is distribution of words. Algorithm estimates probability of word belonging to a topic and topic to article.
- Need to shrink database (800,000 articles too much ...)

### Work in progress: necessary to create test/training set

- We build a "scoring" app (in R) that takes random draws from articles-database:
  - Score sentiment on 5-point scale;
  - Score relevance (relevant, politics, company news/mergers, other);



### FD sentiment score app



- First idea: score sentiment for Naïve Bayes Classifier...
- Only 10–20% of articles were judged as relevant . . .
- Idea of relevance and "spam" filter . . .
- Currently 12,000 articles scored ...



### On the agenda

#### On the agenda for this year

- Better train Bayes naive classifier; currently training set of 12,000 articles. Seems small compared to 800,000 articles → strive for 25,000;
- Additional fine-tuning of lexicon based sentiment list;
- Formal testing of value added textual data in nowcasting exercise;
- Formal comparison of lexicon-based method and machine-learning method;

### Summing up

- Nowcasting using mechanical models is useful, espacially pertaining to the curent (and previous) quarter;
- Using/combining with forecasts of professional analysts helpful especiall in volatile times;
- Jury still out on value added of textual data, but first results are promising.



# Thank you for your attention!

J.M.de.Winter@dnb.nl

