Measuring trends and persistence in capital and labor misallocation

Jasper de Winter* & Maurice Bun*[‡]

De Nederlandsche Bank (DNB) Econometrics and Modelling Department* University of Amsterdam[‡]

KU Leuven, 7 June, 2019

Disclaimer: views expressed do not necessarily reflect official position of De Nederlandsche Bank

Research question

• What is the extent and nature of misallocation of capital and labor in the Dutch economy, and how has it evolved over time?

Motivation

 Several papers misallocation is a serious problem and has increased since the Great Recession Gopinath et al. (2017), Dias (2018), Restuccia and Rogerson (2017)

Main contribution

• Extent previous research by analyzing nature, and persistence of misallocation by applying models from the earnings literature.

Main take-aways from our study

- Misallocation of capital in the Netherlands has increased over the period 2001-2017;
- Misallocation of labor has remained more or less stable in our sample;
- Capital wedge is relatively large for small, highly productive firms;
- Capital wedge is relatively small for large, unproductive firms;
- Misallocation of labor is temporary for most firms, and dies out relatively quickly;
- Misallocation of capital is more permanent, and the temporary component dies out slowly;

Labor productivity: stylized facts Netherlands

- Slowdown labor productivity since mid 1990s in much of the Western world;
- Slowdown in growth of total factor productivity key contributor (& stagnant capital deepening);
- In Mostly caused by within-sector deceleration, not by sectoral-composition;

(Some) causes slow growth total factor productivity

- Decline in the rate of technological progress → techno-optimists versus techno-optimists e.g. Gordon (2016) and Vijg (2011) versus Mokyr (2002), Brynjolfsson and McAfee (2012, 2013);
- Mismeasurement \rightarrow intangible assets & ict-goods;
- Technology diffusion had declined \rightarrow "frontier" and "laggard" firms e.g. McGowan et al. (2018), Andrews et al. (2016);
- Inefficiencies in the allocation of capital and labor across firms \rightarrow misallocation e.g. Hsieh and Klenow (2009), Gopinath et al. (2017);

Intuition

- "Frictions" in labor, product and credit markets hinder reallocation and dampen labor productivity dynamics Gopinath et al. (2017)
- Significant aggregate productivity gains from re-allocation of resources from low- to high productivity firms

Hsieh and Klenow model: assumptions

- Firms are heterogeneous in their performance & factor-market distortions they face
- Firms supply heterogeneous good which is priced individually in the market
- Firms produces according to Cobb-Douglas production function

Key equations Hsieh and Klenow (2009)

Production function:

$$Y_i = TFPQ_i L_i^{\alpha} K_i^{1-\alpha},$$

Profit maximization:

$$\pi_i = (1 - \boldsymbol{\tau_i^{\mathsf{Y}}}) P_i Y_i - w L_i - (1 + \boldsymbol{\tau_i^{\mathsf{K}}}) R K_i,$$

Profit maximizing price:

$$P_i = \frac{\sigma}{\sigma-1} M C_i,$$

Marginal costs:
$$MC_i = \left(\frac{RK_i}{\alpha}\right)^{\alpha} \left(\frac{wL_i}{1-\alpha}\right)^{1-\alpha} \frac{(1+\tau_i^{\mathsf{K}})^{\alpha}}{\text{TFPQ}_i(1-\tau_i^{\mathsf{Y}})}$$

Note

- "Wedges" on output (τ_i^{Y}) and capital (τ_i^{Y}) are non-standard elements.
- $\bullet\,$ Firms have constant markups depending linearly & solely on $\sigma\,$

•
$$TFPQ_i \uparrow \Rightarrow MC_i \downarrow \Rightarrow P_i \downarrow \Rightarrow Y_i \uparrow;$$

• $\tau_i^Y \mid \tau_i^K \uparrow \Rightarrow MC_i \uparrow \Rightarrow P_i \uparrow \Rightarrow Y_i \downarrow$

Misallocation measures Hsieh and Klenow (2009) : first order conditions

$$P_{is,t}\frac{\partial Y}{\partial L} = MRPL_i = (1 - \alpha) \left(\frac{\sigma - 1}{\sigma}\right) \left(\frac{P_i Y_i}{L_i}\right) = \left(\frac{1}{1 - \tau_i^{\mathsf{Y}}}\right) w,$$

$$P_{is,t}\frac{\partial Y}{\partial K} = MRPK_i = \alpha_s\left(\frac{\sigma-1}{\sigma}\right)\left(\frac{P_iY_i}{K_i}\right) = \left(\frac{1+\tau_i^{\mathsf{K}}}{1-\tau_i^{\mathsf{Y}}}\right)R,$$

$$TFPR_i = P_i TFPQ_i \propto (MPRL_i)^{1-\alpha} (MRPK_i) \propto \frac{(1+\tau_i^{\mathbf{K}})^{\alpha}}{(1-\tau_i^{\mathbf{Y}})}$$

Note:

- In the absence of distortions MRPK_i & MRPL_i would be equated across all firms;
- If std(*MRPK*) \neq 0 | std(*MRPL*) \neq 0 \Rightarrow std(*TFPR*) \neq 0;
- Std(*MRPK*), std(*MRPL*), τ_i^K and τ_i^Y our measures of misallocation;

Hsieh and Klenow (2009) framework: graphical

Effect of a change in TFPQ

- All "wedges" are zero
- firms with higher $TFPQ_i$ produce more at lower price (p'^*)
- Consequence: economy wide TFPQ is at efficient level (TFPQ_{efficient})

DeNederlandscheBank EUROSYSTEEM

Effect of a wedge on capital (τ^{κ})

- τ^{K} is disturbing allocation, $TFPR'^{*} \neq TFPR^{*} \Rightarrow std(TFPR) \neq 0$
- Reason: p'^* is too high and y'^* is too low given firm's *TFPQ*
- Consequence: economy wide TFPQ is lower than TFPQ_{efficient}

Jasper de Winter

Database

Tax-data from Statistics Netherlands (CBS)

- Population of Dutch firms that declare corporate income tax in period 2001-2017;
- Matched with firm-level data of Dutch business registry;
- Fine grained industrial division: NACE 5-digit
 - 2-digit: retail trade (47); 5-digit e.g.: Retail sale of fruit and vegetables, (4721), Retail sale of books (4761)
 - 2-digit: civil engineering (42); 5-digit e.g: Construction of roads and motorways (4210), Construction of utility projects for electricity and telecommunications (4250)
 - 93/240 industries in manufacturing/services sector;
- Number of employees, size-class, balance sheet items, profit & loss account.

Analyzed database

- Repeated cross-section (highly unbalanced), restricted to non-agricultural non-financial sector;
- "Standard" cleaning (e.g. Gamberoni et al., 2016 and Gopinath et al., 2017);
- Number of firm-year observations: 1,831,575 \parallel firms: 342,245 \parallel 110 thousand p/y;

Increase std(*MRPK*) >> std(*MRPL*)

First look: total factor productivity loss

Total TFP Loss

• $TFPQ_{efficient} \Rightarrow std(MRPK) = std(MRPL) = std(TFPR) = 0$

Manufacturing versus services sector

e.g. Dias et al. (2016), Buso et al. (2013), de Vries (2014);

- Capital & labor distortions services sector \gg manufacturing sector;
- Caused by lower competition, limited trade-ability, high regulatory barriers.

Large versus micro firms

- e.g. Gopinath et al. (2017), Calligaris et al. (2017);
 - Capital & labor distortions large firms \ll small
 - Convergence between capital & labor distortions large firms ightarrow small firms;
 - Large firms tend to be older & can self-finance. Less exposed to financial constraints.

Multivariate ordered probit

$$p_{ij} = \Pr(y_i = i) = (\kappa_{i-1} < x_j\beta + \mu \le \kappa_{i-1}) \\ = \Phi(\kappa_i - x_j\beta) - \Phi(\kappa_{i-1} - x_j\beta)$$

where, $\Phi(.)$ is the standard normal cumulative distribution function.

Dependent variables

- Deciles of $\tau_{is,t}^{K*}$ and $\tau_{is,t}^{L*}$ distribution, the absolute levels of capital and labor;
- Rewritten versions of $\tau_{is,t}^{K}$ and $\tau_{is,t}^{Y}$ (Hsieh and Klenow, 2009), assuming:

•
$$1 - \tau_{is,t}^{Y} = 1/(1 + \tau_{is,t}^{L*})$$

- $1 + \tau_{is,t}^{K} = (1 + \tau_{is,t}^{K*})/(1 + \tau_{is,t}^{L*}).$
- Decile 1-2 "very low", 3-4 "low", 5-6 "average", 7-8 "high", 9-10 "very high"
- Regressors: firm-characteristics, year and firm's position in the productivity distribution: "laggards" (1st), "average" (2nd-9th), "frontier" (10th)

DeNederlandscheBank EUROSYSTEEM

Ordered probit τ_i^K

Regressors: dummyset TFPQ (frontier/average/laggard), dummyset size-class (micro, small, medium, large), dummyset year (2001-2017), dummyset NACE Rev.2 (2-digit)

Firm size

DeNederlandscheBank FUROSYSTEEM

Ordered probit τ_i^L

Regressors: dummyset TFPQ (frontier/average/laggard), dummyset size-class (micro, small, medium, large), dummyset year (2001–2017), dummyset NACE Rev.2 (2-digit)

Ordered probit τ_i^K with interactions dummys

Regressors: dummyset of TFPQ (frontier/average/laggard) \times size-class (micro, small, medium, large) \times year (2001–2017) and dummyset NACE Rev.2 (2-digit)

Ordered probit τ_i^L with interactions dummys

Regressors: dummyset of TFPQ (frontier/average/laggard) \times size-class (micro, small, medium, large) \times year (2001–2017) and dummyset NACE Rev.2 (2-digit)

De**Nederlandsche**Bank

EUROSYSTEEM

Persistence of misallocation: permanent and transitory components

How persistent is misallocation?

- Exploit empirical specifications from literature on individual earnings (Ng, 2008; Guvenen, 2009, Doris et al., 2013)
- Split *MRPK/MRPL* $(y_{i,t})$ in permanent $(y_{i,t}^{P})$ and transitory $(y_{i,t}^{T})$ component.

Formula's Doris et al., 2013

$$\begin{array}{lll} y_{i,t} &= y_{i,t}^{P} + y_{i,t}^{T} \\ y_{i,t} &= p_{t}\eta_{i} + \lambda_{t}v_{i,t} \\ v_{i,t} &= \rho v_{i,t-1} + \varepsilon_{i,t} \\ \end{array}$$

$$\begin{array}{lll} V_{t,\infty} &= \rho_{t}^{2}\sigma_{\eta}^{2} + \lambda_{t}^{2}\sigma_{v1}^{2}, & t = 1, \\ V_{t,\infty} &= \rho_{t}^{2}\sigma_{\eta}^{2} + \lambda_{t}^{2}(\rho^{2t-2}\sigma_{v1}^{2} + \sigma_{\varepsilon}^{2}\sum_{w=0}^{t-2}\rho^{2w}), & t > 1. \end{array}$$

Doris et al., 2013 intuition

- General Method of Moments (GMM) estimator;
- Firm-level heterogeneity in permanent component ("fixed effect");
- Transitory component is a homogeneous AR(1) process.

20 / 24

Permanent & transitory component MRPK and MRPL

- MRPK has become more permanent;
- MRPL has remained mostly transitory;
- Model fit: Monte Carlo simulation able to reproduce observed trends

Manufacturing versus services sector

- Permanent component in both manufacturing & services has risen;
- Since '09 permanent component \gg temporary component;
- Diference permanent-transitory has risen most in services sector.

Large firms versus micro firms

- Negative relation firm-size capital distortions caused by diff. in permanent component;
- Small firms have more permanent distortions than large firms.

Laggards versus frontier firms

- Permanent component increased for all productivity categories;
- Frontier firms have most permanent distortions. Implies high wedges have become more permanent.

Not all distortions are misallocation...

Haltiwanger, Kulick, Syverson (2018), David and Venkateswaran (2019), Bils, Klenow and Ruane (2018)

Distortion	% less misallocation
Capital adjustment costs	5
Alternative functional form Firm-level production function "CES" versus "CD"	1 0*
Heterogeneous markups	25
TOTAL	31

* assuming that technology has same impact on all firms (see e.g. Acemoglu and Restrepo, 2017)

Main take-aways from our study

- Misallocation of capital in the Netherlands has increased over the period 2001-2017;
- Misallocation of labor has remained more or less stable in our sample;
- Capital wedge is relatively large for small, highly productive firms;
- Capital wedge is relatively small for large, unproductive firms;
- Misallocation of labor is temporary for most firms, and dies out relatively quickly;
- Misallocation of capital is more permanent, and the temporary component dies out slowly;

Ideas

- Methodology could be applied to other countries as well
- Look more at interaction between balance sheet strength and misallocation (zombiefirms);
- Expand model permanent and transitory component